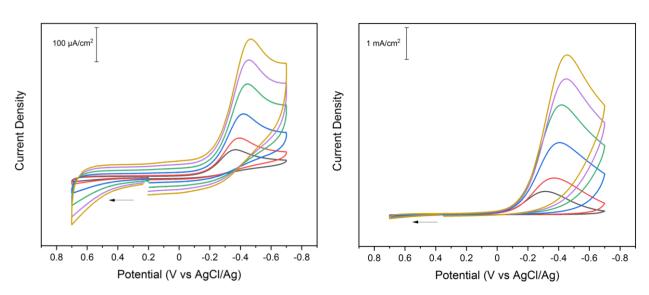
Electronic Supplementary	Material (ES	I) for RS0	C Advances.
This journal is © The Roya			

Su	pporting	Inforn	natior

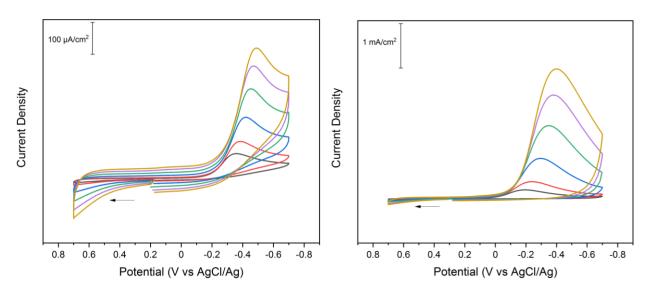
Impact of the Choice of Buffer on the Electrochemical Reduction of Cr(VI) in Water on Carbon Electrodes

Callie M. Stern, Devin D. Meche, Noémie Elgrishi*

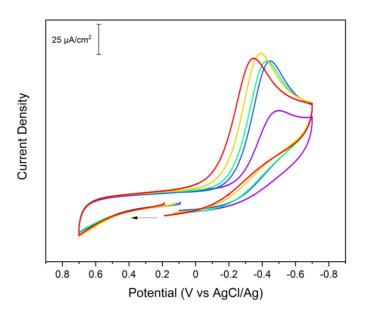

Department of Chemistry, Louisiana State University,

Baton Rouge, Louisiana, 70803, United States

*Correspondence to: noemie@lsu.edu


Index		Page
Variable Scan Rate Studies in Malate Buffer	Figure S1	SI-3
Variable Scan Rate Studies in Succinate Buffer	Figure S2	SI-3
Effect of pH		
In Malate Buffer	Figure S3	SI-4
In Succinate Buffer	Figure S4	SI-4
Effect of Buffer Strength		
Peak Current and Potential Analysis at 0.20 mM Cr(VI)	Figure S5	SI-5
Peak Current and Potential Analysis at 7.00 mM Cr(VI)	Figure S6	SI-5
Effect of Electrolyte		
At 0.20 mM Cr(VI)	Figure S7	SI-6
At 7.00 mM Cr(VI)	Figure S8	SI-6
Variable Scan Rate Studies		
In Citrate Buffer	Figure S9	SI-7
In Acetate Buffer	Figure S10	SI-7
In Propanoate Buffer	Figure S11	SI-8
In Glycolate Buffer	Figure S12	SI-8
Summary analysis at 0.20 mM Cr(VI)	Figure S13	SI-9
Summary analysis at 7.00 mM Cr(VI)	Figure S14	SI-9
Chronoamperometry of 0.20 mM Cr(VI)		
In Malate Buffer	Figure S15	SI-10
In Succinate Buffer	Figure S16	SI-10
Chronoamperometry of 7.00 mM Cr(VI)		
In Malate Buffer	Figure S17	SI-11
In Succinate Buffer	Figure S18	SI-11
X-Ray Photoelectron Spectroscopy Data	Figure S19	SI-12
Electrode Recyclability Data in Succinate Buffer	Figure S20	SI-13

Variable Scan Rate Studies in Malate Buffer


Figure S1. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M malate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

Variable Scan Rate Studies in Succinate Buffer

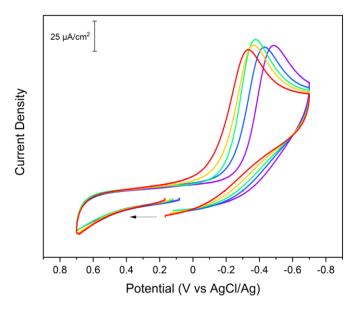
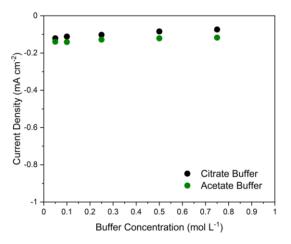
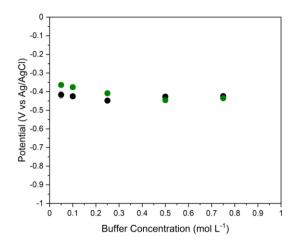
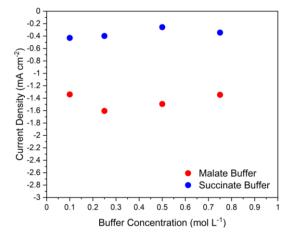


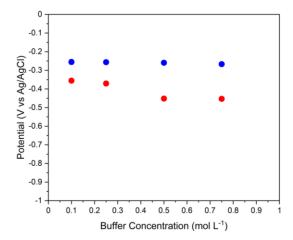
Figure S2. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M succinate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm glassy carbon working electrodes.

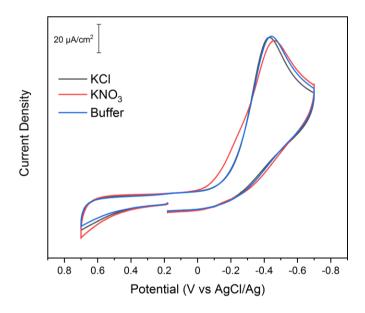
Effect of pH




Figure S3. Cyclic voltammograms of 0.20 mM K_2CrO_4 added to a 0.10 M malate buffer at pH values of 3.75 (red), 4.25 (orange), 4.75 (green), 5.25 (blue), and 5.75 (purple). Data collected with 1.00 M KCl at scan rates of 0.10 V s⁻¹ on 3 mm diameter glassy carbon working electrodes.


Figure S4. Cyclic voltammograms of 0.20 mM K_2CrO_4 added to a 0.10 M succinate buffer at pH values of 3.75 (red), 4.25 (orange), 4.75 (green), 5.25 (blue), and 5.75 (purple). Data collected with 1.00 M KCl at scan rates of 0.10 V s⁻¹ on 3 mm diameter glassy carbon working electrodes.


Effect of Buffer Strength


Figure S5. Reduction peak current density (left) and potential (right) values plotted as a function of buffer concentration for $0.20 \text{ mM K}_2\text{CrO}_4$ added to a 0.10 M citrate (black) or acetate (green) buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.10 V s^{-1} on 3 mm diameter glassy carbon working electrodes.

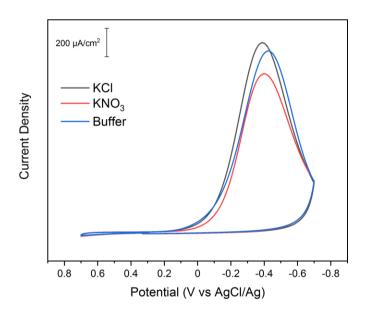


Figure S6. Reduction peak current density (left) and potential (right) values plotted as a function of buffer concentration for 7.00 mM K_2CrO_4 added to a 0.10 M malate (red) or succinate (blue) buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.10 V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

Effect of Electrolyte

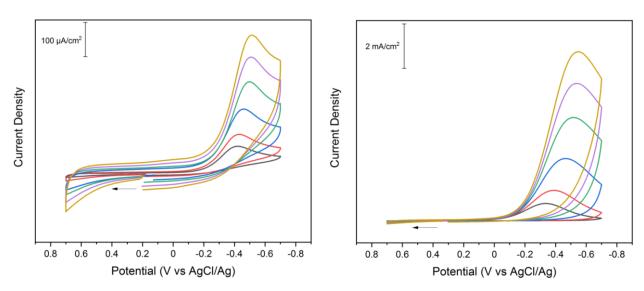
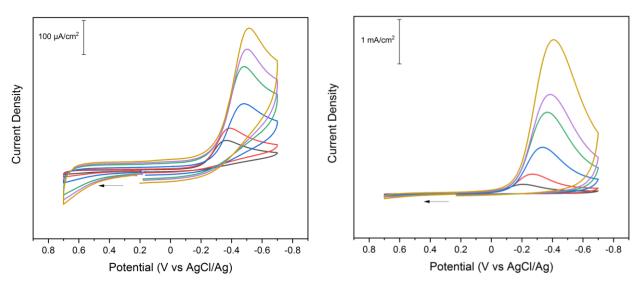
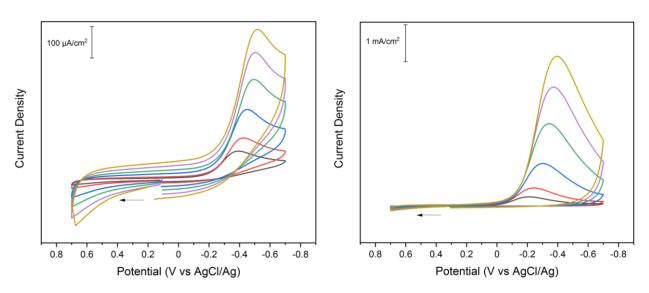


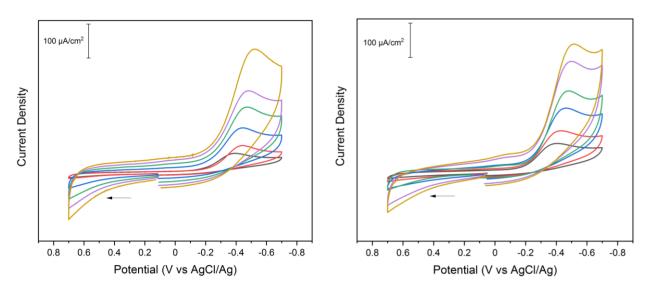
Figure S7. Cyclic voltammograms of 0.20 mM K_2CrO_4 added to a 0.10 M citrate buffer at pH 4.75. Data collected with 1.00 M KCl (black), 1.00 M KNO₃ (red), or without added electrolyte (blue) at scan rates of 0.10 V s⁻¹ on 3 mm diameter glassy carbon working electrodes.


Figure S8. Cyclic voltammograms of 7.00 mM K_2CrO_4 added to a 0.10 M citrate buffer at pH 4.75. Data collected with 1.00 M KCl (black), 1.00 M KNO₃ (red), or without added electrolyte (blue) at scan rates of 0.10 V s⁻¹ on 3 mm diameter glassy carbon working electrodes

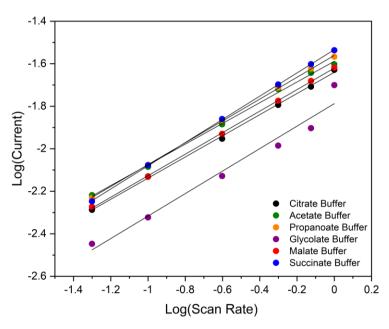
Variable Scan Rate Studies in Citrate Buffer


Figure S9. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M citrate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

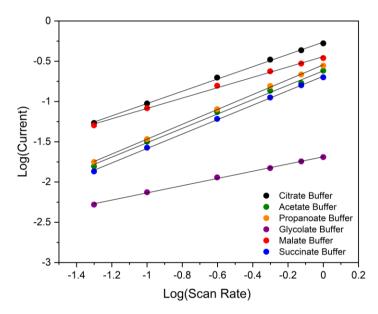
Variable Scan Rate Studies in Acetate Buffer


Figure S10. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M acetate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

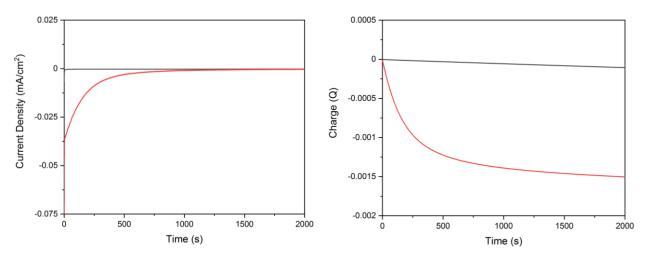
Variable Scan Rate Studies in Propanoate Buffer


Figure S11. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M propanoate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

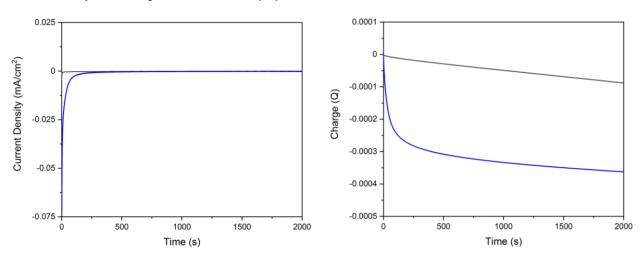
Variable Scan Rate Studies in Glycolate Buffer


Figure S12. Cyclic voltammograms of 0.20 mM (left) and 7.00 mM (right) K_2CrO_4 added to a 0.10 M glycolate buffer at pH 4.75. Data collected with 1.00 M KCl at scan rates of 0.05 (black), 0.10 (red), 0.25 (blue), 0.50 (green), 0.75 (purple) and 1.00 (yellow) V s⁻¹ on 3 mm diameter glassy carbon working electrodes.

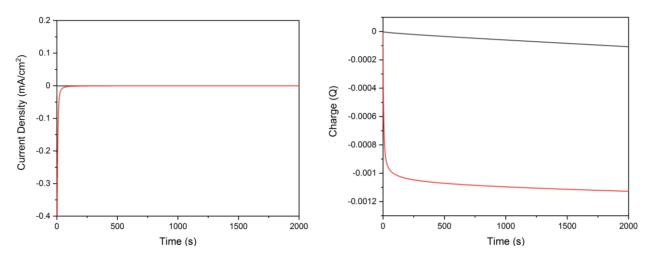
Summary Analysis of Variable Scan Rate Data At 0.20 mM Cr(VI)


Figure S13. Log of the absolute values of the reduction peak currents (mA) plotted as a function of the log of the scan rate (V s⁻¹) for the reduction of 0.20 mM K₂CrO₄ added to 0.10 M acid buffers at pH 4.75. Malate and succinate data reproduced from figure 2 of the main text. Linear fit parameters given in Table 1. Data collected on 3 mm diameter glassy carbon working electrodes.

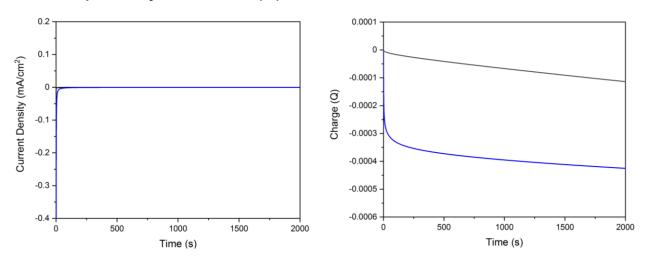
Summary Analysis of Variable Scan Rate Data At 7.00 mM Cr(VI)


Figure S14. Log of the absolute values of the reduction peak currents (mA) plotted as a function of the log of the scan rate (V s⁻¹) for the reduction of 7.00 mM K₂CrO₄ added to 0.10 M acid buffers at pH 4.75. Malate and succinate data reproduced from figure 2 of the main text. Linear fit parameters given in Table 1. Data collected on 3 mm diameter glassy carbon working electrodes.

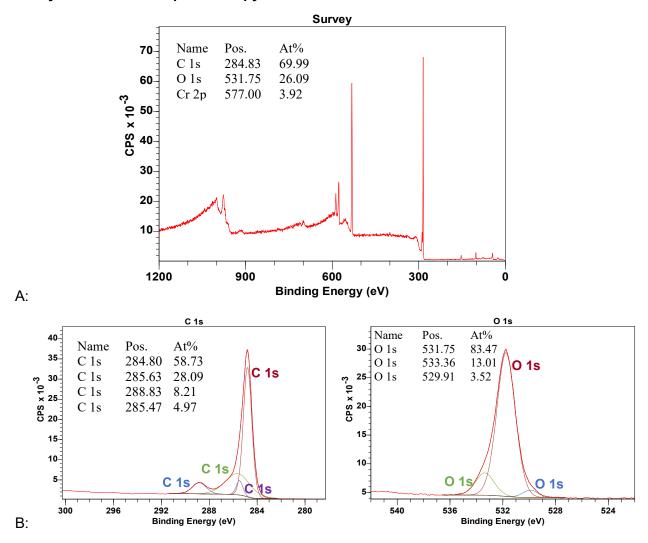
Chronoamperometry of 0.20 mM Cr(VI) in Malate Buffer


Figure S15. Current density (left) and corresponding charge passed (right) during the reduction at −0.300 V vs AgCl/Ag of 0.20 mM K₂CrO₄ added to a 0.10 M malate buffer at pH 4.75. Data collected with 1.00 M KCl while stirring on a 5 mm diameter glassy carbon working electrode. The black trace is the background in the buffer without the Cr(VI) and collected at the same potential.

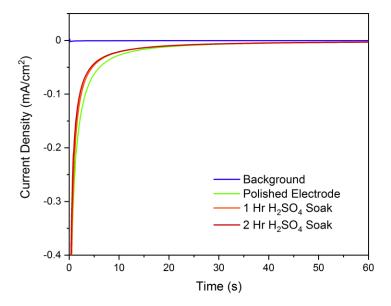
Chronoamperometry of 0.20 mM Cr(VI) in Succinate Buffer


Figure S16. Current density (left) and corresponding charge passed (right) during the reduction at −0.300 V vs AgCl/Ag of 0.20 mM K₂CrO₄ added to a 0.10 M succinate buffer at pH 4.75. Data collected with 1.00 M KCl while stirring on a 5 mm diameter glassy carbon working electrode. The black trace is the background in the buffer without the Cr(VI) and collected at the same potential.

Chronoamperometry of 7.00 mM Cr(VI) in Malate Buffer


Figure S17. Current density (left) and corresponding charge passed (right) during the reduction at −0.200 V vs AgCl/Ag of 7.00 mM K₂CrO₄ added to a 0.10 M malate buffer at pH 4.75. Data collected with 1.00 M KCl while stirring on a 5 mm diameter glassy carbon working electrode. The black trace is the background in the buffer without the Cr(VI) and collected at the same potential.

Chronoamperometry of 7.00 mM Cr(VI) in Succinate Buffer


Figure S18. Current density (left) and corresponding charge passed (right) during the reduction at −0.200 V vs AgCl/Ag of 7.00 mM K₂CrO₄ added to a 0.10 M succinate buffer at pH 4.75. Data collected with 1.00 M KCl while stirring on a 5 mm diameter glassy carbon working electrode. The black trace is the background in the buffer without the Cr(VI) and collected at the same potential.

X-Ray Photoelectron Spectroscopy Data

Figure S19. A: XPS wide region survey scan. Data was calibrated to C 1s at 284.8 eV. B: High resolution core scan of C 1s (left) and O 1s (right). High resolution core scan of Cr 2p signals are shown in Figure 5.

Electrode Recyclability Data in Succinate Buffer

Figure S20. Evolution of current density over time measured during chronoamperometry at -0.200 V vs AgCl/Ag of 7.00 mM K₂CrO₄ added to a 0.10 M succinate buffer at pH 4.75. The electrodes were fouled during the chronoamperometry, then soaked in 0.50 M H₂SO₄ at various time intervals and reused for chronoamperometry. Data collected with 1.00 M KCl while stirring on a 5 mm diameter glassy carbon working electrode. The background trace was collected in the same condition but in the absence of Cr(VI).