#### Supplementary Material (ESI)

#### Direct Michael Addition/Decarboxylation Reaction of Coumarin-3-Carboxylic Acid to Cyclic 1,3-Diketones by Copper Ferrite Oxide Nanoparticles Immobilized on Microcrystalline Cellulose

Bhupender Kumar<sup>a</sup>, Biplob Borah<sup>a</sup>, J. Nagendra Babu<sup>b</sup> and L. Raju Chowhan<sup>a\*</sup> <sup>a</sup>School for Applied Material Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382021, India.

<sup>b</sup>Department of Chemical Sciences, School for Basic and Applied Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, India.

E-mail address: rajuchowhan@gmail.com, rchowhan@cug.ac.in

Table of contents

| Sr. No. | Section                                                                        | Page<br>No. |
|---------|--------------------------------------------------------------------------------|-------------|
| 1.      | General Experimental Details                                                   | S1          |
| 2.      | DTG of CuFe <sub>2</sub> O <sub>4</sub> @MCC nanocomposite                     | S2          |
| 3.      | Brunauer–Emmett–Teller (BET) Analysis of CuFe <sub>2</sub> O <sub>4</sub> @MCC | S2          |
| 4.      | General experimental procedure for the reaction                                | S3          |
| 5.      | Spectral data for products (3a-z)                                              | S3          |
| 6.      | Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra of products (3a-z)    | S12         |

#### **Experimental Section**

#### 1. General Experimental Details

All commercially available chemicals were used without further purification. Field Emission Scanning Electron Microscope (FESEM) (Carl Ziess Merlin compact equipped with Oxford X-max<sup>n</sup>), High-resolution Transmission Electron Microscopy (HR-TEM) of JEOL model JEM 2100 TEM HR LaB6 and X-ray diffraction (XRD) of Bruker D8 Advance X-ray diffractometer were used for the characterization of Cu<sub>2</sub>O immobilized on microcrystalline cellulose (Cu<sub>2</sub>O@MCC). The thermal stability of the catalyst was analyzed using TG/DTA 7300 of EXSTAR. Brunauer-Emmett-Teller (BET) analysis was carried out to examine the surface area of composite material by using Bel**sorp**<sub>max</sub> of Microtrac BEL Corp. Detection of copper was measured from inductively coupled plasma (ICP) emission spectroscopy of 7300 DV, Perkin Elmer. <sup>1</sup>H NMR spectra were obtained on Bruker 500 MHz NMR and 400, 600 MHz JEOL NMR spectrometers.<sup>13</sup>C NMR spectra were recorded at 100, 125, and 150 MHz. Chemical shifts are reported relative to the TMS signal. Multiplicity is indicated as follows: s (singlet); bs (broad singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets), etc. TOF and quadrupole mass analyzer types are used for the HRMS measurements. FT-IR spectrometer (Shimadzu) in the range of 400–4000 cm<sup>-1</sup>. The melting point of organic molecules was observed from the melting point apparatus. Thin Layer Chromatography (TLC) was performed by using silica gel 60 F<sub>254</sub> plates (Merck).

### 2. DTG of $CuFe_2O_4@MCC$ nanocomposite





| Composite                             | Surface area (m²/g) | Average Pore<br>Diameter (Å) |
|---------------------------------------|---------------------|------------------------------|
| CuFe <sub>2</sub> O <sub>4</sub> @MCC | 15.77               | 28.186                       |

# 4. General Procedure for Michael Addition/decarboxylation of 1,3 diketone cyclohexanone with 1mmol coumarin 3-carboxylic acid

In a 10ml round bottom flask 1mmol of dimedone **(1a)** with 1mmol coumarin 3carboxylic acid **(2a)** in DMSO:  $H_2O$  (1:1) 3 ml with catalyst (20mg) was stirred for 7 hours at 60°C. The progress of the reaction was examined by thin-layer chromatography (TLC). After completion of the reaction, 10 ml of water was added and extracted with ethyl acetate (3 X 10 ml). A combined organic layer passed through filter paper for removing the catalyst. The organic layer was washed with brine(20 ml), dried over anhydrous  $Na_2SO_4(10 \text{ gm})$ , and concentrated under reduced pressure. Thus, obtained crude was washed with diethyl ether (3 ml) to remove nonpolar impurities. Further purification was done by recrystallization in ethyl acetate if necessary.

#### 5. Spectral data for products (3a-p)



**4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)chroman-2-one (3a):** White solid; 86% yield; Melting Point: 178-180 °C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2947, 1758, 1558, 1373, 1288, 1226, 1180, 1041, 933, 756, 609; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.19 (dd, *J* = 14.0, 3.0 Hz, 1H), 7.04 – 7.00 (m, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 4.57 (dd, *J* = 8.5, 4.9 Hz, 1H), 2.95 (dd, *J* = 16.6, 8.5 Hz, 1H), 2.68 (dd, *J* = 16.6 Hz, 1H), 2.32 – 2.15 (m, 4H), 0.97 (s, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  167.88, 151.67, 128.20, 127.94, 125.39, 124.34, 116.64, 115.39, 33.61, 32.17, 28.44, 28.31. HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>19</sub>O<sub>4</sub> [M+H]<sup>+</sup> 287.1283; Found: 287.1318.



**4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-6-methylchroman-2-one (3b):** White solid; 82% yield; Melting Point: 182-184°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1743, 1566, 1481, 1365, 1249, 1226, 1157, 1041, 879, 817, 663, 609; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  6.98 (d, *J* = 7.1 Hz, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.80 (s, 1H), 4.53 (dd, *J* = 8.4, 4.8 Hz, 1H), 2.91 (dd, *J* = 16.6, 8.6 Hz, 1H), 2.65 (dd, *J* = 16.6, 4.8 Hz, 1H), 2.24 (s, 4H), 2.19 (s, 3H), 0.97 (s, 6H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  172.72, 154.38, 144.65, 137.84, 133.09, 129.72, 121.08, 120.09, 111.52, 61.82, 38.41, 36.85, 33.11, 33.00, 25.54, 12.12. HRMS(ESI+): m/z calculated for C<sub>18</sub>H<sub>21</sub>O<sub>4</sub> [M+H]<sup>+</sup> 301.1440; Found: 301.1479.



**4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-6-methoxychroman-2-one (3c):** White solid; 79% yield; Melting Point: 180-182°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1765, 1563, 1365, 1248, 1268, 1176, 1048, 1020, 879, 814, 673, 609; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.07 (d, *J* = 8.8 Hz, 1H), 6.92 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.65 (d, *J* = 2.8 Hz, 1H), 4.67 (dd, *J* = 8.0, 5.9 Hz, 1H), 3.80 (s, 3H), 3.02 (dd, *J* = 16.6, 8.3 Hz, 1H), 2.85 (dd, *J* = 16.6, 5.7 Hz, 1H), 2.52 – 2.27 (m, 4H), 1.12 (s, 6H). <sup>13</sup>C NMR (126 MHz, DMSO) δ 168.09, 155.84, 145.66, 126.52, 117.33, 114.79, 112.93, 112.88, 55.75, 33.39, 32.14, 28.74, 28.28.



6-fluoro-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)chroman-2-one

(3d): White solid; 83% yield; Melting Point: 184-186°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1766, 1558, 1373, 1296, 1249, 1180, 1041, 925, 879, 810, 694, 617; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub> + DMSO-*d*<sub>6</sub>) δ 7.75 – 7.68 (m), 7.14 (d, *J* = 8.4 Hz, 1H), 7.05 (s, 1H), 6.95 – 6.91 (m, 1H), 4.69 (t, *J* = 6.9 Hz, 1H), 2.99 (dd, *J* = 16.5, 8.7 Hz, 1H), 2.83 (dd, *J* = 16.4 Hz, 1H), 2.31 (d, *J* = 6.9 Hz, 4H), 1.07 (s, 6H). <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>) δ 168.03, 149.69, 133.15, 128.39 (d, *J*<sub>C-F</sub> = 2.7 Hz), 125.02, 116.40, 115.44, 33.72, 32.18, 28.41, 28.31, 20.86. <sup>19</sup>F NMR (500 MHz, CDCl<sub>3</sub> + DMSO-*d*<sub>6</sub>) δ -114.90. HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>18</sub>FO<sub>4</sub> [M+H]<sup>+</sup> 305.1189; Found: 305.1227.



**6-chloro-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)chroman-2-one** (**3e**): White solid; 83% yield; Melting Point: 172-174°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1728, 1581, 1488, 1373, 1257, 1141, 871, 802, 756, 686, 609; <sup>1</sup>H NMR (500 MHz, DMSO) δ 7.27 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.05 (d, *J* = 8.7 Hz, 1H), 7.00 (d, *J* = 2.1 Hz, 1H), 4.59 (dd, *J* = 8.5, 4.8 Hz, 1H), 2.99 (dd, *J* = 16.7, 8.7 Hz, 1H), 2.69 (dd, *J* = 16.7, 4.8 Hz, 1H), 2.37 – 2.18 (m, 4H), 0.99 (s, 6H). <sup>13</sup>C NMR (126 MHz, DMSO) δ 167.26, 150.53, 127.88, 127.80, 127.64, 127.54, 118.59, 114.85, 33.12, 32.16, 28.51, 28.25. HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>18</sub>ClO<sub>4</sub> [M+H]<sup>+</sup> 321.0894; Found: 321.0934.



**6,8-dichloro-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)chroman-2-one (3f):** White solid; 80% yield; Melting Point: 178-180°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2955, 1734, 1424, 1558, 1448, 1373, 1248, 1158, 1041, 874, 612; <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  7.72 (d, J = 2.4 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 4.23 (t, J = 4.4 Hz, 1H), 2.76 (t, J = 10.3 Hz, 3H), 2.60 (d, J = 17.6 Hz, 1H), 2.50 (d, J = 16.1 Hz, 1H), 2.34 (d, J = 16.1 Hz, 1H), 1.22 (s, 3H), 1.19 (s, 3H). <sup>13</sup>C NMR (126 MHz, DMSO- $d_6$ )  $\delta$  196.88, 172.65, 165.82, 145.41, 128.59, 128.32, 128.05, 121.67, 111.01, 50.58, 32.22, 29.47, 28.80, 26.62.HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>18</sub>NO<sub>6</sub> [M+H]<sup>+</sup> 355.0504; Found: 355.0501.



6-bromo-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)chroman-2-one

(**3g**): White solid; 81% yield; Melting Point: 174-176 °C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1766, 1558, 1342, 1257, 1226,1157, 1041, 871, 601; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.38 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.12 (d, *J* = 2.2 Hz, 1H), 6.98 (d, *J* = 8.6 Hz, 1H), 4.58 (dd, *J* = 8.6, 4.7 Hz, 1H), 2.98 (dd, *J* = 16.7, 8.7 Hz, 1H), 2.67 (dd, *J* = 16.7, 4.8 Hz, 1H), 2.46 - 1.97 (m, 4H), 0.98 (s, 6H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  167.22, 151.01, 130.71, 130.49, 128.06, 119.04, 115.80, 114.99, 33.15, 32.19, 28.46, 28.25. HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>18</sub>BrO<sub>4</sub> [M+H]<sup>+</sup> 365.0461; Found: 365.0448.



**4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-6-nitrochroman-2-one (3h):** White solid; 80% yield; Melting Point: 184-186°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 2954, 1712, 1620, 1527, 1388, 1342, 1234, 1203, 1157, 1033, 925, 833, 794, 748, 671, 648, 594; <sup>1</sup>H NMR (500 MHz, DMSO-*d*<sub>6</sub>) δ 8.30 (d, *J* = 2.6 Hz, 1H), 8.11 (dd, *J* = 9.0, 2.7 Hz, 1H), 8.07 (s, 1H), 7.22 (d, *J* = 9.0 Hz, 1H), 4.24 (s, 1H), 2.65 (t, *J* = 5.8 Hz, 1H), 2.60 – 2.58 (m, 1H), 2.50 (d, *J* = 17.6 Hz, 1H), 2.34 (d, *J* = 16.1 Hz, 1H), 2.27 (d, *J* = 16.1 Hz, 1H), 1.12 (d, *J* = 8.0 Hz, 6H).<sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 194.66, 170.69, 163.65, 153.02, 142.38, 138.05, 124.28, 109.31, 104.92, 55.22, 48.82, 30.27, 27.53, 26.47, 25.15, 5.52. HRMS(ESI+): m/z calculated for C<sub>17</sub>H<sub>18</sub>NO<sub>6</sub> [M+H]<sup>+</sup> 332.1134; Found: 332.1133.



**4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)chroman-2-one (3i):** White solid; 85% yield; Melting Point: 176-178°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3440, 2561, 1766, 1635, 1550, 1488, 1450, 1365, 1296, 1172, 1103, 1072, 995, 945, 925, 864, 756, 709, 648; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.22 – 7.16 (m, 1H), 7.02 (d, *J* = 6.2 Hz, 2H), 6.96 (d, *J* = 7.9 Hz, 1H), 4.63 – 4.53 (m, 1H), 2.91 (dd, *J* = 16.6, 8.4 Hz, 1H), 2.85 (dd, *J* = 16.6, 5.3 Hz, 1H), 2.35 (m, 4H), 1.91 – 1.80 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 167.90, 151.71, 128.30, 127.90, 125.51, 124.32, 116.57, 116.45, 33.63, 28.56, 20.86. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>15</sub>O<sub>4</sub> [M+H]<sup>+</sup> 259.0970; Found: 259.0972.



**4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-6-methylchroman-2-one (3j):** White solid; 82% yield; Melting Point: 176-178°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3433, 2368, 1743, 1589, 1488, 1380, 1296, 1172, 1195, 1103, 1056, 894, 817, 709, 663; <sup>1</sup>H NMR (400 MHz, ) δ 6.98 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.84 (d, *J* = 8.2 Hz), 6.82 (d, *J* = 1.6 Hz), 4.52 (dd, *J* = 8.4, 4.9 Hz, 1H), 2.88 (dd, *J* = 16.6, 8.6 Hz, 1H), 2.65 (dd, *J* = 16.6, 4.9 Hz, 1H), 2.34 (m, 4H), 2.20 (s, 3H)1.83 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 168.04, 149.72, 133.16, 128.48, 128.39, 125.07, 116.66, 116.34, 33.75, 28.51, 20.86. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>FO<sub>4</sub> [M+H]<sup>+</sup> 273.1127; Found: 273.1121.



**4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-6-methoxychroman-2-one** (3k): White solid; 78% yield; Melting Point: 178-180°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3440, 2947, 1735, 1585, 1365, 1248, 1145, 1157, 1084, 1019, 977, 889, 813, 794, 663, 609; <sup>1</sup>H NMR (500 MHz, DMSO) δ 7.06 (d, *J* = 8.8 Hz, 1H), 6.91 (dd, *J* = 8.8, 3.0 Hz, 1H), 6.66 (d, *J* = 2.9 Hz, 1H), 4.66 (dd, *J* = 8.2, 5.6 Hz, 1H), 3.81 (s, 3H), 3.00 (dd, *J* = 16.6, 8.3 Hz, 1H), 2.83 (dd, *J* = 16.6, 5.5 Hz, 1H), 2.66 – 2.64 (m, 4H), 2.00 – 1.96 (m, 2H). <sup>13</sup>C NMR (126 MHz, DMSO-*d*<sub>6</sub>) δ 168.07, 155.83, 145.67, 126.48, 117.23, 116.11, 113.20, 112.74, 55.76, 33.41, 28.80, 20.82. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>O<sub>5</sub> [M+H]<sup>+</sup> 289.1076; Found: 289.1075.



**6-fluoro-4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)chroman-2-one (3l):** White solid; 83% yield; Melting Point: 180-182°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3438, 3047, 1735, 1589, 1373, 1250, 1149, 1150, 1080, 1002, 972, 887, 817, 810, 663, 609; <sup>1</sup>H NMR (500 MHz, DMSO) δ 7.24 (d, *J* = 8.5 Hz, 1H), 7.05 – 6.99 (m, 2H), 4.55 (t, *J* = 7.5 Hz 1H), 2.99 – 2.88 (m, 1H), 2.66 (d, *J* = 16.6 Hz, 1H), 2.35 (m, 4H), 1.83 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 172.04, 155.30, 132.65, 132.55, 132.42 (d, *J*<sub>C-F</sub> = 5.3 Hz), 123.28, 120.86, 37.90, 33.35, 25.52. <sup>19</sup>F NMR (500 MHz, CDCl<sub>3</sub> + DMSO-*d*<sub>6</sub>) δ -115.20. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>FO<sub>4</sub> [M+H]<sup>+</sup> 273.0876; Found: 293.0873.



**6-chloro-4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)chroman-2-one (3m):** White solid; 83% yield; Melting Point: 174-176°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3456, 3047, 2345, 1743, 1589, 1481, 1411, 1373, 1249, 1211, 1149, 1080, 1002, 972, 877, 817, 794, 756, 663, 609; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.43 (d, *J* = 2.5 Hz, 1H), 7.29 (dd, *J* = 8.7, 2.6 Hz, 1H), 7.12 (d, *J* = 8.7 Hz, 1H), 4.10 (dd, *J* = 6.8, 3.7 Hz, 1H), 2.61 – 2.54 (m, 2H), 2.48 – 2.31 (m, 4H), 2.03 – 1.81 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 197.06, 172.77, 168.00, 149.16, 128.99, 128.72, 128.39, 127.07, 118.49, 111.98, 41.91, 36.97, 28.37, 27.61, 20.61. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>ClO<sub>4</sub> [M+H]<sup>+</sup> 293.0581; Found: 293.0581.



**6,8-dichloro-4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)chroman-2-one (3n):** White solid; 81% yield; Melting Point: 174-176°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3456, 2970, 1720, 1420, 1558, 1450, 1380, 1249, 1172, 1126, 1041, 918, 856, 632, 593; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.57 (s, 1H), 7.46 (s, 1H), 4.12 (s, 1H), 2.63 (s, 2H), 2.38 (m, 4H), 1.95 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  197.00, 172.73, 167.42, 145.31, 128.71, 128.61, 128.37, 128.06, 121.76, 112.39, 36.91, 28.75, 27.45, 20.56. HRMS(ESI+): m/z calculated for C<sub>16</sub>H<sub>17</sub>O<sub>4</sub> [M+H]<sup>+</sup> 327.0191; Found: 327.0190.



**6-bromo-4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)chroman-2-one (3o):** White solid; 79% yield; Melting Point: 170-172°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3417, 2939, 2545, 1767, 1688, 1558, 1473, 1365, 1296, 1164, 1103, 1072, 1033, 987, 948, 871, 810, 748, 702, 640; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.36 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.14 (d, *J* = 2.3 Hz, 1H), 6.96 (d, *J* = 8.6 Hz, 1H), 4.57 (dd, *J* = 8.5, 4.7 Hz, 1H), 2.94 (dd, *J* = 16.7, 8.7 Hz, 1H), 2.66 (dd, *J* = 16.7, 4.8 Hz, 1H), 2.35 (m, 4H), 1.89 – 1.77 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 172.73, 167.24, 151.06, 130.69, 130.61, 128.18, 118.96, 116.23, 115.85, 33.24, 28.57, 20.82. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>BrO<sub>4</sub> [M+H]<sup>+</sup> 337.0075; Found: 337.0075.



**4-(2-hydroxy-6-oxocyclohex-1-en-1-yl)-6-nitrochroman-2-one (3p):** White solid; 76% yield; Melting Point: 176-178°C; IR (KBr)  $u_{max}$  (cm<sup>-1</sup>): 3425, 2345, 1704, 1643, 1519, 1380, 1342, 1226, 1134, 1002, 910, 880, 748, 663, 632; <sup>1</sup>H NMR (400 MHz, )  $\delta$  8.33 (s, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 7.31 (d, *J* = 8.9 Hz, 1H), 4.25 – 4.16 (m, 1H), 2.61 (m, 4H), 2.40 (s, 2H), 2.09 – 1.89 (m, 2H). <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  197.09, 172.72, 167.45, 154.96, 144.30, 126.46, 125.47, 124.35, 117.86, 112.24, 41.77, 36.92, 28.28, 27.42, 20.53. HRMS(ESI+): m/z calculated for C<sub>15</sub>H<sub>14</sub>NO<sub>6</sub> [M+H]<sup>+</sup> 304.0821; Found: 304.0821

# Copies of <sup>1</sup>H and <sup>13</sup>C NMR spectra of products(3a-p)

Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3a** 





# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3b**



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3c**

# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3d

DC-5 single\_pulse



#### Copy of <sup>19</sup>FNMR spectra of **Compound 3d**





### Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3e





### Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3f

Bhupender RC-BK-DC-7 PROTONRO DM60 {E:\data} CUG 1





# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3g**



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3h



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3i



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3j



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3k



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of Compound 3I

#### Copy of <sup>19</sup>FNMR spectra of **Compound 3I**





#### Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3m**





# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3n**

DC-17 single\_pulse нн





# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3o**



# Copies of <sup>1</sup>HNMR and <sup>13</sup>CNMR spectra of **Compound 3p**