Electrochemical stripping voltametrical sensor based on polypyrrole exfoliated polyetheramine-montmorillonite nanocomposite for nanomolar detection of nifuroxazide

Mona Elfiky*, Mohamed Ghoneim, Hanaa El-Desoky, Amera Hassanein, Nehal Salahuddin

Department of Chemistry, Faculty of Science, Tanta University, 31527, Egypt Tel.: +201004155414; fax: +20403350804 E-mail address: <u>Elfiky mona@science.tanta.edu.eg</u>

Scheme. S₁. Structure of nifuroxazide (NF).

<u>**T**</u>₄₀₃: x+y+z = 5.3 & <u>**T**</u>₅₀₀₀: x+y+z = 81

Scheme. S₂. Structure of Polyoxyalkylene amine D₄₀₀, D₂₀₀₀, T₄₀₃ and T₅₀₀₀.

2. Experimental

2.1. Materials, equipment, electrochemical liquids, and fabrication of unmodified and modified CPSs

All reagents were in pure form and used as purchased. Pyrrole monomer (Py, reagent grade, 98%), and Iron (III) chloride (FeCl₃, reagent grade, 97%) were obtained from Sigma-Aldrich company. Na-Montmorillonite (Na-MMT) was acquired from southern clay products (colloid BP), Inc (Gonzales, Texas, USA) with (114.8 meq/100g) cation exchange capacity. The Na-Montmorillonite clay was dried in a vacuum oven at 100°C for 24 h, yielding the interlayer spacing (d₀₀₁) was 9.6 Å. Four kinds of polyoxypropylene diamine and triamine (Jeffamine) were ordered from (Huntsman Corporation, TX, USA) including Jeffamine D₄₀₀, D₂₀₀₀, T₄₀₃, and T₅₀₀₀ with an average molecular mass of 430, 2000, 440, 5000 and the primary amine contents (PACs) are 4.3, 0.97, 6.1, and 0.52 meq/ g, respectively. The commercial capsules of NF (*Antinal* ®200 mg, and Drotazide ® 200 mg), and ultra-pure active powder were ordered from Amoun Pharmaceutical Co., El-Obour City, Egypt.

A Perkin Elmer spectrophotometer and a Phillips Powder-Diffractometer equipped with a Ni-filtered Cu-K_{α} (λ =1.5418 Å) were used to obtain Fourier transform infrared (FT-IR) spectra and Wide-angle X-ray diffraction (WAXD) patterns of prepared samples, respectively. JEOL JSM 5400 Scanning electron microscopy and a JEOL JEM-100CX electron microscope were used to investigate the morphological structure of MMT and the prepared nanocomposites. In addition, the ultra-thin films of nanocomposites were fabricated for transmission electron microscopy (TEM) analysis by cutting capsules of samples using an ultra-microtome, LKB 8800 ultra-microtome III equipped with a glass knife. The conductivity of MMT and prepared nanocomposites were measured via two probe system of direct current circuit (DC circuit). PC-controlled potentiostat (PAR) Model 273 A and PAR-394 (Princeton Applied Research, Oak Ridge, TN, USA) with the software 270/250-PAR were utilized for the analytical voltammetry measurements.

NF stock (10⁻³M) and diluted (1.0 to 1000 nM) solutions were prepared in methanol. Urine samples of 3 healthy volunteers were added to a micro-electrolysis cell containing a B-R buffer of pH 5.0 (9: 1, buffer: urine). Britton–Robinson (B–R) universal buffer series (pH 2-11) were prepared by mixing various proportions of boric, phosphoric, and acetic (0.04 M acids) with the NaOH (0.2 M).

5.0 g of carbon powder (CP) was pasted with 1.8 mL of paraffin oil for 1 h to acquire bare carbon paste **[B]** CP. Whereas, 1.0 % **[Ppy / (D₂₀₀₀, D₄₀₀, T₅₀₀₀, and T₄₀₃)-MMT-50]** nanocomposites modulated CP sensors (**MCPSs**) were constructed by blending 4.95 g of graphite powder, and 0.05 g of modulation material with 1.8 mL paraffin oil to acquire a uniform MCP. The same method was carried out by changing the weight percent of the nanocomposite at the range of 0.5% - 3.0% of **[PDM-50]**. The **[B]** CP, and fabricated MCPSs were inserted into the cavity of the sensor (Inner diameter (ID): 3mm), the superficial of the sensor was smoothed until glossy.

Code	Polyetheramine-montmorillonite			Ppy / <i>polyetheramine - MMT</i>
				Wt %
	Туре	Wt/g	Wt %	
[PDM-10]	D ₂₀₀₀ -MMT	0.1	10	93.23
[PDM-20]	D ₂₀₀₀ -MMT	0.2	20	90.22
[PDM-50]	D ₂₀₀₀ -MMT	0.5	50	66.22
[PD ₁ M-10]	D ₄₀₀ -MMT	0.1	10	88.90
[PD ₁ M -20]	D ₄₀₀ -MMT	0.2	20	85.84
[PD ₁ M-50]	D ₄₀₀ -MMT	0.5	50	83.08
[PTM-10]	T ₅₀₀₀ -MMT	0.1	10	90.20
[PTM-20]	T ₅₀₀₀ -MMT	0.2	20	95.94
[PTM-50]	T ₅₀₀₀ -MMT	0.5	50	76.97
[PT1M-10]	T ₄₀₃ -MMT	0.1	10	92.74
[PT ₁ M-20]	T ₄₀₃ -MMT	0.2	20	86.37
[PT ₁ M-50]	T ₄₀₃ -MMT	0.5	50	70.29

Table. S₁. Composition data of Ppy/ polyetheramine - MMT nanocomposites.

Fig.S₁. FT-IR spectra of Na-MMT, Ppy, organoclay, and Ppy/ organoclay nanocomposites at different % of organoclay in the region 4000-400 cm⁻¹.

Fig.S₂. (a): SW-AdAS voltammograms of 30.0 nM *NF*inpH 5(B-R buffer) at E_{acc} =0.60 V for 10 s at A) [B] CPS, B) 7.0% [Na-MMT, C)1.0 % [PT₁M-50], D)1.0 % [PTM-50], E) 1.0 % [PD₁M-50], and F) 1.0 % [PDM-50] MCPSs (f = 100 H_z, a = 25 mV and ΔE_s = 10 mV). (b) Plot of 30.0 nM *NF* in (pH 5) at E_{acc} =0.6 V for 10 s of different % of [PDM-50].

Fig.S₃. Conductivity plots of (a) [PDM], (b) [PTM], (c) $[PD_1M]$, and (d) $[PT_1M]$.

Fig.S₄. N₂ adsorption-desorption isotherm of some of prepared materials

Fig.S₅. EIS of (a) [B] CPS, and (b) 1.0% [PDM-50] MCPS.

Fig. S₆. CVs of 50.0 nM NF (pH 5) utilizing [B] CPS (a), and 1.0% [Ppy/ D₂₀₀₀-MMT 50] MCPS(b) at 0.0s (Cycle (I)) for 10.0 s (Cycles; 1st (II) and 2nd (III)) at v=100 mV.s⁻¹.

Fig. S₇. The effect of using of 30.0 nM NF in series of the B-R buffer upon 1.0 % [PDM-50] MCPS (f = 120 Hz, $\Delta E_s = 12$ mV and, a = 30 mV).

Fig. S₈. Effect of pulse parameters of 30.0 nM NF in the B-R universal buffer pH 5 upon 1.0 % [PDM-50] MCPS at $E_{acc} = 0.5$ V for 20 s.

Fig. S₉. (a) The effect of E_{acc} on SW-AdsASVs peaks of 0.1 μ M NF in pH 5 upon 1.0 % [PDM-50] MCPSfor 20s (ΔE_s = 12 mV, *f*= 120 H_z, and *a*= 30 mV), and (b) The effect of the t_{acc} of (I) 0.01, (II) 0.05, and (III) 0.1 μ M at E_{acc} = 0.6 V.

Fig. S₁₀. SW-AdAS voltammetry peaks of (a) 20.0 nM NF, (b) 20.0 nM NF mixed with 2.0 μ M (~100-fold) of A⁻₁, and (c) 20.0 nM NF mixed with 20.0 nM of **Mix**₁upon the upon the surface of 1.0 % [PDM-50] MCPS.

Fig. S₁₁. The reusability (a), and stability(b) histogram plots of the 1.0 % [PDM-50] MCPS.