Supporting Information

Covalently Linked Benzothiadiazole-Fullerene Adducts for Organic Optoelectronic Devices: Synthesis and Characterization

Divambal Appavoo,^{a, b} Komal Bhardwaj,^{c, d} Samarendra P. Singh,^e Emmanuel N. Koukaras,^f Rachana Kumar,^{c, d} and Bimlesh Lochab^{*a}

Total 40 pages, Scheme 1, Figures 26, Tables 9

Contents

Scheme S1. Synthesis of 5	S4
Synthetic details (compounds 1-5, 8 and PC ₆₁ BA)	S4-8
Figure S1. ¹ H NMR spectrum of 1 in CDCl ₃	S9
Figure S2. ¹³ C NMR spectrum of 1 in CDCl ₃	S9
Figure S3. ¹ H NMR spectrum of 2 in CDCl ₃	S10
Figure S4. ¹³ C NMR spectrum of 2 in CDCl ₃ .	S10
Figure S5. ¹ H NMR spectrum of 3 in CDCl ₃	S11
Figure S6. ¹³ C NMR spectrum of 3 in CDCl ₃ .	S11
Figure S7. ¹³ C NMR spectrum of 4 in CDCl ₃	S12
Figure S8. ¹ H NMR spectrum of 5 in CDCl ₃ .	S12
Figure S9. ¹³ C NMR spectrum of 5 in CDCl ₃	S13
Figure S10. ¹ H NMR of 6 in CDCl ₃	S13
Figure S11. ¹³ C NMR spectrum of 6 in CDCl ₃	S14
Figure S12. ¹ H NMR of PC ₆₁ BA in CDCl ₃ with some DMSO-d ₆ and CS ₂	S14
Figure S13. ¹ H NMR of 7 in CDCl ₃	S15
Figure S14. ¹ H NMR spectrum of 8 in CDCl ₃	S15
Figure S15. ¹³ C NMR spectrum of 8 in CDCl ₃	S16
Figure S16. ¹ H NMR of 9 in CDCl ₃	S16
Figure S17. ¹³ C NMR of 9 in CDCl ₃ .	S17
Figure S18. Stacked ¹ H NMR spectra of PC ₆₁ BM, 9, 10-D and 10-I in CDCl ₃	S17
Figure S19. ¹³ C NMR spectrum of 10-I in CDCl ₃	S18
Figure S20. ¹³ C NMR spectrum of 10-D in CDCl ₃	S18

Figure S21. UV-visible spectra of (A) 6, 7, and $PC_{61}BM$ and (B) 9, 10-I, 10-D, and $PC_{61}BM$ in ODCB (concentrations of 10^{-5} M). ------S18

------\$22

Figure S25. Theoretical UV-visible spectra of the reference structures (a) $PC_{61}BM$ and (b) $PC_{61}BTF_2$, as well as the functionalized $PC_{61}BM$ structures 10-I: (c) $PC_{61}BM-1xBTF_2$, (d) PC₆₁BM-1xBTF₂-para and (e) PC₆₁BM-1xBTF₂@config3, the doubly functionalized structures 10-D: (f) PC₆₁BM-2xBTF₂ and (g) PC₆₁BM-2xBTF₂@config3 and the triply-functionalized structure (h) PC₆₁BM-3xBTF₂ (notice the wider x-axis scale). Computed at the M06/def2-SVP level of theory. ------S23 Table S1a. Characteristics details of the excited states of PC₆₁BM. ------S24 Table S1b. Characteristics details of the excited states of PC₆₁BTF₂. -----S26 Table S1c. Characteristics details of the excited states of PC₆₁BM-1xBTF₂. ------S28 Table S1d. Characteristics details of the excited states of PC₆₁BM-1xBTF₂-para. -----S30 **Table S1e.** Characteristics details of the excited states of $PC_{61}BM-1xBTF_2(a)conf3$. -----S31 Table S1f. Characteristics details of the excited states of PC₆₁BM-2xBTF₂. ------S33 Table S1g. Characteristics details of the excited states of PC₆₁BM-2xBTF₂@conf3. -----S35 Table S1 h. Characteristics details of the excited states of PC₆₁BM-3xBTF₂. -----S37

 Table S2. Dipole moments of all the structures.

 References ------S39

Synthesis of compounds 1-5, 8 and PC₆₁BA

Scheme S1. Synthesis of 5, reagents and conditions: (i) a. *n*-BuLi, dry THF, -78 °C, 24 h; b.
Me₃SnCl, r.t., 24 h, 100% (ii) HCOONH₄, EtOAc, Pd/C, 1 h, 78% (iii) CHCl₃, TEA, 0 °C; SOCl₂,
0 °C to r.t., 6 h, 71% (iv) a. Fe, 90 °C; b. Br₂, reflux, 2 days, 70% (v) Pd₂(dba)₃, P(*o*-tolyl)₃, PhMe;
b. 1 in PhMe, 16 h, 27%.

(5-Hexylthiophen-2-yl)trimethylstannane, 1¹

To a solution of 2-hexylthiophene (1.07 mL, 5.94 mmol) in dry THF (10 mL) at -78 °C was added *n*-butyllithium (8.00 mL, 12.00 mmol, 1.6 M in hexane) under nitrogen. The reaction mixture was allowed to warm to room temperature and stirring continued for 24 h. Trimethyltin chloride (6.50 mL, 6.54 mmol) was added and reaction was left to continue at room temperature for another 24 h. Reaction mixture was then poured into water and diethyl ether was added. Extraction was done

and the organic phase was dried over anhydrous Na₂SO₄ and the solvent was evaporated. **1** was obtained as a reddish brown liquid and was used for the next step without further purification (2.05 g, 100%). ¹H NMR (CDCl₃, 400 MHz, ppm): 7.04 (d, 1H, J = 3.16 Hz, CHCSn), 6.90 (d, 1H, J = 3.08 Hz, CHCC), 2.89 (t, 2H, J = 15.12 Hz, CH₂CS), 1.71-1.67 (m, 8H, CH_{2aliphatic}), 0.90 (t, 3H, J = 13.52 Hz, CH₂CH₃), 0.37 (s, 9H, Sn(CH₃)₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): 152.00, 135.14, 134.78, 125.51, 31.98, 31.76, 30.09, 29.07, 22.73, 14.22, -8.19.

4,5-Difluorobenzene-1,2-diamine, 2²

4,5-Difluoro-2-nitroaniline (5.00 g, 28.00 mmol) and ammonium formate (27.08 g, 430.00 mmol) were weighed in a 100 mL 2-neck flask, followed by the addition of ethyl acetate (50 mL). Under an inert atmosphere of nitrogen, Pd/C (0.50 g, 10%) was added and reaction mixture was stirred at room temperature. After 1 h, reaction was stopped, mixture was filtered through celite and rinsed abundantly with ethyl acetate. The filtrate was extracted with water and the organic phase was dried over anhydrous Na₂SO₄ and solvent was evaporated. The dark brown solid obtained was recrystallized from hexane/ethyl acetate (1:2 mixture) to afford **2** as brown crystals (3.16 g, 78%). ¹H NMR (CDCl₃, 400 MHz, ppm): 6.51 (t, 2H, *J* = 18.92 Hz, C*H*), 3.30 (broad s, 4H, N*H*₂). ¹³C NMR (CDCl₃, 100 MHz, ppm): 145.35, 145.20, 142.98, 142.83, 130.83, 130.73, 105.61, 105.52, 105.47, 105.39.

5,6-Difluorobenzo[c][1,2,5]thiadiazole, 3³

To a 2-neck flask containing **2** (3.00 g, 21.00 mmol) was added CHCl₃ (30 mL) followed by triethylamine (7.00 mL, 83.00 mmol) and mixture was stirred in an ice bath under nitrogen. At 0 $^{\circ}$ C, SOCl₂ (3.00 mL, 41.00 mmol) was added dropwise to the reaction. After complete addition,

mixture was allowed to warm to room temperature and stirring continued for 6 h. Reaction mixture was poured onto water and extraction was done with CHCl₃. The organic phase was dried over anhydrous Na₂SO₄ and the solvent evaporated. The brown residue obtained was purified by silica gel chromatography (eluent 2% ethyl acetate in hexane) giving **3** as a pure white crystalline solid (2.55 g, 71%). ¹H NMR (CDCl₃, 400 MHz, ppm): 7.75 (t, 2H, J = 17.32 Hz, CH). ¹³C NMR (CDCl₃, 100 MHz, ppm): 155.37, 155.17, 152.78, 152.58, 151.05, 151.00, 150.94, 106.39, 106.33, 106.25, 106.18.

4,7-Dibromo-5,6-difluorobenzo[c][1,2,5]thiadiazole, 4⁴

3 (2.05 g, 11.00 mmol) and Fe powder (0.19 g, 3.50 mmol) were added to a 100 mL 2-neck flask and heated to 90 °C. Bromine (9.00 mL, 178.00 mmol) was added dropwise, over 1h, to the melt. The reaction was stirred under reflux for two days. After cooling to room temperature, CHCl₃ (100 mL) and Na₂S₂O₃ aqueous solution (5%, 50 mL) were added to the mixture and stirred for 1h. Extraction was then done with 5% Na₂S₂O₃ aqueous solution and water. The organic phase was dried over anhydrous Na₂SO₄ and the solvent was evaporated. Purification of the product was done by silica gel chromatography (eluent 2% ethyl acetate in hexane), followed by recrystallization in ethanol. White crystalline solid of **4** was obtained (2.76 g, 70%). ¹³C NMR (CDCl₃, 100 MHz, ppm): 153.36, 153.15, 150.76, 150.55, 149.00, 99.62, 99.53, 99.47, 99.39. ¹⁹F NMR (CDCl₃, 376 MHz, ppm): -118.59.

4-Bromo-5,6-difluoro-7-(5-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole, 5⁵

4 (1.05 g, 3.05 mmol) was added to a 250 mL 2-neck flask that was purged with nitrogen. Degassed toluene (120 mL) was added to the flask followed by $Pd_2(dba)_3$ (0.13 g, 0.15 mmol) and tri(*o*-tolyl) phosphine (0.18 g, 0.60 mmol). A solution of **1** (1.36 g, 3.00 mmol) in toluene (50 mL) was added dropwise, over 2 h, to the above stirring mixture at room temperature. After stirring at room temperature for 16 h, the solvent was evaporated and the residue was purified by silica gel chromatography (eluent 10% CH₂Cl₂ in hexane) resulting in the desired product obtained as a yellow solid (0.35 g, 27 %). ¹H NMR (CDCl₃, 400 MHz, ppm): 8.07 (d, 1H, *J* = 3.76 Hz, CHCC), 6.93 (d, 1H, *J* = 3.40 Hz, CHCCH₂), 2.91 (t, 2H, *J* = 15.28 Hz, CH₂CS), 1.42 (quintet, 2H, *J* = 30.12 Hz, CH₂aliphatic), 1.44-1.32 (m, 6H, CH₂aliphatic), 0.90 (t, 3H, *J* = 14.28 Hz, CH₃). ¹³C NMR (CDCl₃, 100 MHz, ppm): 153.87, 153.67, 151.33, 151.13, 150.98, 150.91, 150.23, 150.04, 150.01, 149.95, 148.02, 147.94, 147.63, 147.44, 131.77, 131.68, 128.33, 128.30, 128.28, 128.24, 124.99, 113.86, 113.74, 96.34, 96.12, 31.69, 31.62, 30.25, 29.84, 28.99, 22.71, 14.21. ¹⁹F NMR (CDCl₃, 376 MHz, ppm): -120.37 (d), -127.72 (d).

$PC_{61}BA^6$

PC₆₁**BM** (150 mg, 0.16 mmol) was dissolved in toluene (33 mL) in a 100 mL flask. Concentrated HCl (35%, 16 mL) and glacial acetic acid (33 mL) were added to the flask and reaction was stirred under reflux for 48 h. The reaction mixture was evaporated to dryness and to the brown residue water was added to remove excess acid. After decantation and air drying of the brown solid, the latter was washed several times with CH₂Cl₂, until all unreacted **PC**₆₁**BM** was removed (until the CH₂Cl₂ wash became colourless). **PC**₆₁**BA** was obtained by centrifugation, as a brown solid (135 mg, 95%). ¹H NMR (CDCl₃, DMSO-d₆, CS₂, 400 MHz, ppm): 7.72 (d, 2H, J = 7.24 Hz, CH_{aromatic}),

7.36-7.28 (m, 3H, CH_{aromatic}), 2.75-2.67 (m, 2H, CHCOOH), 2.28-2.23 (m, 2H, CH_{2aliphatic}), 1.99-1.93 (m, 2H, CH_{2aliphatic}). IR (cm⁻¹) = 3270 (O-H), 1700 (v_{C=O}).

(4-(((2-(Tert-butoxy)-2-oxoethyl)amino)methyl)phenyl)boronic acid, 8⁷

4-Aminomethylphenylboronic acid, hydrochloride (200 mg, 1.07 mmol) was dissolved in dry THF (5 mL) in a 10 mL flask and kept under nitrogen. Triethylamine (1.07 mL, 2.13 mmol) was added to the above and stirring was done in an ice bath. At 0 °C, a THF solution of *tert*-butyl-2-bromoacetate (0.18 mL, 0.71 mmol in 3 mL THF) was added dropwise to the above stirring mixture over two hours. The reaction was allowed to continue at room temperature for 18 h, after which the solvent was evaporated. Ethyl acetate was added to the residue and extraction was done with distilled water, followed by brine. The organic phase was dried over anhydrous Na₂SO₄ and the solvent was evaporated. The product was used for the next step without further purification (crude yield = 126 mg, 66%). ¹H NMR (CDCl₃, 400 MHz, ppm): 7.69 (d, 2H, J = 7.84 Hz), 7.43 (d, 2H, J = 7.84 Hz), 3.92 (s, 2H), 3.41 (s, 2H), 1.48 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz, ppm): 170.76, 13378, 128.91, 55.32, 27.97.

Figure S1. ¹H NMR spectrum of 1 in CDCl₃.

Figure S2. ¹³C NMR spectrum of 1 in CDCl₃.

Figure S3. ¹H NMR spectrum of 2 in CDCl₃.

Figure S4. ¹³C NMR spectrum of 2 in CDCl₃.

Figure S5. ¹H NMR spectrum of **3** in CDCl₃.

Figure S6. ¹³C NMR spectrum of 3 in CDCl₃.

Figure S7. ¹³C NMR spectrum of 4 in CDCl₃.

Figure S8. ¹H NMR spectrum of 5 in CDCl₃.

Figure S9. ¹³C NMR spectrum of 5 in CDCl₃.

Figure S10. ¹H NMR of 6 in CDCl₃.

Figure S11. ¹³C NMR spectrum of 6 in CDCl₃.

Figure S12. ¹H NMR of $PC_{61}BA$ in $CDCl_3$ with some DMSO-d₆ and CS_2 .

Figure S13. ¹H NMR of 7 in CDCl₃.

Figure S14. ¹H NMR spectrum of 8 in CDCl₃.

Figure S15. ¹³C NMR spectrum of 8 in CDCl₃.

Figure S16. ¹H NMR of 9 in CDCl₃.

Figure S17. ¹³C NMR of 9 in CDCl₃.

Figure S18. Stacked ¹H NMR spectra of PC₆₁BM, 9, 10-D and 10-I in CDCl₃.

Figure S19. ¹³C NMR spectrum of 10-I in CDCl₃.

Figure S20. ¹³C NMR spectrum of 10-D in CDCl₃.

Figure S21. UV-visible spectra of (A) 6, 7, and $PC_{61}BM$ and (B) 9, 10-I, 10-D, and $PC_{61}BM$ in ODCB (concentrations of 10^{-5} M).

Details of the Calculations

The initial geometry optimization calculations were performed employing the gradient corrected functional PBE⁸ of Perdew, Burke and Ernzerhof. The def-SVP basis set⁹ was used for all of the calculations. At this stage of the calculations, to increase the computational efficiency (without loss in accuracy), the resolution of the identity method¹⁰ was used for the treatment of the two-electron integrals. The final geometry optimizations were further performed using Truhlar's meta-hybrid exchange–correlation functional M06,¹¹ and the same basis set. Tight convergence criteria were placed for the SCF energy (up to 10^{-7} Eh) and the one-electron density (rms of the density matrix up to 10^{-8}) as well as for the norm of the Cartesian gradient (residual forces both average and maximum smaller than $1.5x10^{-5}$ a.u.) and residual displacements (both average and maximum smaller than $6x10^{-5}$ a.u.). The UV-visible spectra have been produced by convoluting Gaussian functions with HWHM = 0.1 eV centered at the excitation wavenumbers.

Figure S22. Isosurface of the 10-I as different regio-isomers: (a) HOMO and (b) LUMO of $PC_{61}BM-1xBTF_2$, the (c) HOMO and (d) LUMO of $PC_{61}BM-1xBTF_2$ -*para* structure, as well as the (e) HOMO and (f) LUMO of $PC_{61}BM-1xBTF_2$ @conf3 structure. Computed at the M06/def2-SVP level of theory.

Figure S23. Isosurfaces of the 10-D as different regio-isomers of doubly functionalized: (a) HOMO and (b) LUMO of $PC_{61}BM-2xBTF_2$ and (c) HOMO and (d) LUMO of $PC_{61}BM-2xBTF_2@conf3$. Computed at the M06/def2-SVP level of theory.

igure S24. Isosurfaces of the **10-D** as different regio-isomers of triply functionalized: (left) HOMO and (right) LUMO of $PC_{61}BM-3xBTF_2$. Computed at the M06/def2-SVP level of theory.

Figure S25. Theoretical UV-visible spectra of the reference structures (a) $PC_{61}BM$ and (b) $PC_{61}BTF_2$, as well as the functionalized $PC_{61}BM$ structures 10-I: (c) $PC_{61}BM-1xBTF_2$, (d) $PC_{61}BM-1xBTF_2$ -para and (e) $PC_{61}BM-1xBTF_2$ @config3, the doubly functionalized structures 10-D: (f) $PC_{61}BM-2xBTF_2$ and (g) $PC_{61}BM-2xBTF_2$ @config3 and the triply-functionalized structure (h) $PC_{61}BM-3xBTF_2$ (notice the wider x-axis scale). Computed at the M06/def2-SVP level of theory.

Excited States Results

In **Tables S1a-h** shows the computed quantities on the excited states of various fullerene adducts. For all structures 40 excited states were computed except for the largest structure, $PC_{61}BM$ -**3xBTF₂**, for which 30 excited states were computed to reduce the computational cost. Along with the main contributions to the excitation, for each transition, the charge density as well as the change in charge density on each group is provided. Each structure is separated in the following groups (if they exist), **fullerene cage**, $PC_{61}BM$, BTF_2 (all included). Excitations that result in considerable charge transfer are denoted as bold.

Excitation No.	Wavelength (nm)	f	Main Contributions	fullerene	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	631	0.0017	HOMO->LUMO (96%)	97>100 (3)	3>0 (-3)	0.484	5.519
2	619	0.0000	, HOMO->L+1 (88%)	97>100 (3)	3>0 (-3)	0.036	5.503
3	590	0.0000	H-1->LUMO (95%)	100>100 (0)	0>0 (0)	0.036	5.498
4	589	0.0000	H-2->LUMO (95%)	100>100 (0)	0>0 (0)	0.000	5.503
5	565	0.0000	H-3->L+1 (49%), H-2->L+1 (37%), H-1->L+1 (13%)	100>100 (0)	0>0 (0)	0.051	5.503
6	555	0.0003	H-4->LUMO (10%), H-2->L+1 (15%), H-1->L+1 (51%), HOMO->L+2 (22%)	99>99 (0)	1>1 (0)	0.183	5.325
7	544	0.0000	H-3->LUMO (75%), H-1->L+2 (14%)	99>99 (0)	1>1 (0)	0.000	5.498
8	536	0.0002	H-3->L+1 (46%), H-2->L+1 (38%)	99>100 (1)	1>0 (-1)	0.137	5.536
9	515	0.0020	H-4->L+1 (16%), H-1->L+1 (16%), HOMO->L+2 (56%)	98>99 (1)	2>1 (-1)	0.465	5.922
10	514	0.0008	H-4->L+1 (57%), H-2->L+2 (15%), HOMO->L+2 (15%)	98>99 (1)	2>1 (-1)	0.295	5.767
11	504	0.0000	H-3->LUMO (15%), H-2->L+2 (15%), H-1->L+2 (66%)	100>99 (-1)	0>1 (1)	0.025	5.480
12	502	0.0014	H-3->L+2 (80%), H-2->L+2 (10%)	99>98 (-1)	1>2 (1)	0.388	5.482
13	490	0.0001	H-4->LUMO (87%)	97>100 (3)	3>0 (-3)	0.114	5.409

Table S1a. Characteristics details of the excited states of PC₆₁BM.

14	481	0.0014	H-4->L+1 (18%), H-3->L+2 (18%), H-2->L+2 (49%), H-1->L+2 (11%)	99>99 (0)	1>1 (0)	0.374	5.563
15	461	0.0066	H-4->I+2 (94%)	97>98 (1)	3>2 (-1)	0.804	5,559
16	402	0.0000	H-5-N+1 (61%)	91>100 (9)	0 / 2 (<u>1</u>)	0.057	5.555
10	402	0.0000	HOMO->I +4 (32%)	91>100 (9)	920 (-9)	0.037	5.514
17	398	0.0057	H-5->LUMO (66%), H-1->L+3 (15%)	91>100 (9)	9>0 (-9)	0.694	5.570
18	382	0.0118	HOMO->L+3 (75%)	95>100 (5)	5>0 (-5)	0.980	5.845
19	381	0.0019	H-5->L+2 (13%), H-3->L+3 (30%), H-2->L+3 (14%)	97>99 (2)	3>1 (-2)	0.397	5.901
20	377	0.0001	H-10->LUMO (20%), H-2->L+4 (28%), H-1->L+4 (14%)	98>99 (1)	2>1 (-1)	0.095	5.468
21	376	0.0002	H-5->L+1 (26%), HOMO->L+4 (43%)	92>100 (8)	8>0 (-8)	0.119	5.513
22	376	0.0001	H-12->LUMO (16%), H-3->L+3 (10%), H-1->L+4 (21%), HOMO->L+5 (15%)	94>99 (5)	6>1 (-5)	0.088	5.438
23	374	0.0008	H-3->L+3 (17%), H-2->L+3 (26%)	93>100 (7)	7>0 (-7)	0.252	5.737
24	365	0.0003	H-9->LUMO (54%), H-7->LUMO (12%), H-1->L+5 (19%)	89>99 (10)	11>1 (- 10)	0.144	5.519
25	363	0.0051	H-6->LUMO (44%)	66>99 (33)	34>1 (- 33)	0.627	5.645
26	361	0.0127	H-5->LUMO (20%), H-3->L+4 (13%), H-1->L+3 (33%)	92>100 (8)	8>0 (-8)	0.987	5.583
27	357	0.0023	H-8->LUMO (13%), H-6->L+1 (27%), H-5->L+2 (36%)	74>99 (25)	26>1 (- 25)	0.415	5.105
28	353	0.0003	H-6->LUMO (11%), H-6->L+1 (25%), H-5->L+2 (12%), H-4->L+4 (11%)	70>99 (29)	30>1 (- 29)	0.155	5.442
29	352	0.0009	H-6->L+2 (11%), H-4->L+3 (51%)	86>99 (13)	14>1 (- 13)	0.254	5.536
30	349	0.0115	H-9->L+1 (12%), H-3->L+4 (17%), H-2->L+4 (15%), H-1->L+3 (10%)	93>99 (6)	7>1 (-6)	0.924	5.601
31	347	0.0001	H-14->LUMO (20%), H-10->L+1 (16%), H-7->LUMO (24%)	75>99 (24)	25>1 (- 24)	0.084	5.499
32	347	0.0058	H-13->L+1 (10%), H-8->L+1 (11%), H-6->L+1 (13%), HOMO->L+3 (10%)	83>99 (16)	17>1 (- 16)	0.655	5.452

33	344	0.0008	H-13->LUMO (10%), H-12->L+1 (11%), H-6->LUMO (19%)	80>99 (19)	20>1 (- 19)	0.240	5.715
34	342	0.0010	H-11->L+1 (10%), H-10->L+1 (25%), H-7->LUMO (17%)	80>100 (20)	20>0 (- 20)	0.268	5.492
35	341	0.0075	H-8->L+1 (31%)	95>99 (4)	5>1 (-4)	0.738	4.832
36	340	0.0316	H-10->LUMO (13%), H-9->L+1 (15%), H-3->L+4 (29%)	97>99 (2)	3>1 (-2)	1.512	5.678
37	339	0.0058	H-12->LUMO (17%), H-11->LUMO (10%), H-11->L+1 (13%), HOMO->L+5 (14%)	99>99 (0)	1>1 (0)	0.649	6.090
38	338	0.0158	H-8->LUMO (12%), H-8->L+1 (15%), H-1->L+4 (22%), HOMO->L+5 (17%)	97>99 (2)	3>1 (-2)	1.065	6.373
39	337	0.0101	H-12->LUMO (21%), H-11->L+1 (17%)	95>99 (4)	5>1 (-4)	0.852	4.882
40	335	0.0023	H-10->LUMO (11%), H-9->L+1 (43%), H-2->L+4 (20%)	97>100 (3)	3>0 (-3)	0.406	5.284

Table S1b. Characteristics details of the excited states of $PC_{61}BTF_2$.

Excitation No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	μ _{ge} (D)	μ _e (D)
1	628	0.0017	H-1->LUMO (95%)	97>100 (3)	3>0 (-3)	0.479	5.619
2	617	0.0000	H-1->L+1 (87%)	97>100 (3)	3>0 (-3)	0.025	5.527
3	591	0.0000	H-2->LUMO (96%)	100>100 (0)	0>0 (0)	0.036	5.527
4	588	0.0000	H-3->LUMO (94%)	100>100 (0)	0>0 (0)	0.000	5.523
5	565	0.0000	H-4->L+1 (46%), H-3->L+1 (52%)	100>100 (0)	0>0 (0)	0.051	5.537
6	555	0.0002	H-5->LUMO (10%), H-2->L+1 (69%), H-1->L+2 (19%)	99>99 (0)	1>1 (0)	0.161	5.691
7	543	0.0000	H-4->LUMO (71%), H-2->L+2 (17%)	99>99 (0)	1>1 (0)	0.036	5.508
8	535	0.0002	H-4->L+1 (48%), H-3->L+1 (41%)	99>100 (1)	1>0 (-1)	0.132	5.493
9	514	0.0014	H-5->L+1 (51%), H-3->L+2 (17%), H-1->L+2 (21%)	98>99 (1)	2>1 (-1)	0.390	5.814
10	513	0.0024	H-5->L+1 (25%), H-2->L+1 (17%), H-1->L+2 (50%)	98>99 (1)	2>1 (-1)	0.507	6.039
11	504	0.0000	H-4->LUMO (16%), H-2->L+2 (80%)	100>99 (-1)	0>1 (1)	0.025	5.520
12	501	0.0015	H-4->L+2 (79%), H-3->L+2 (11%)	99>98 (-1)	1>2 (1)	0.393	5.656

13	492	0.0000	HOMO->LUMO (99%)	1>100 (99)	99>0 (- 99)	0.025	5.567
14	490	0.0002	H-5->LUMO (84%)	97>100 (3)	3>0 (-3)	0.157	5.384
15	480	0.0012	H-5->L+1 (15%), H-4->L+2 (15%), H-3->L+2 (56%)	90>99 (9)	10>1 (- 9)	0.353	5.528
16	480	0.0001	HOMO->L+1 (91%)	9>100 (91)	91>0 (- 91)	0.111	5.537
17	461	0.0058	H-5->L+2 (94%)	97>98 (1)	3>2 (-1)	0.756	5.605
18	460	0.4244	HOMO->L+3 (98%)	0>0 (0)	100 >100 (0)	6.443	2.789
19	438	0.0000	HOMO->L+2 (100%)	0>98 (98)	100>2 (-98)	0.000	5.545
20	403	0.0001	H-8->L+1 (59%), H-1->L+5 (31%)	84>100 (16)	16>0 (- 16)	0.080	5.569
21	398	0.0056	H-8->LUMO (63%), H-2->L+4 (18%)	84>100 (16)	16>0 (- 16)	0.687	5.457
22	382	0.0107	H-1->L+4 (68%)	94>100 (6)	6>0 (-6)	0.934	5.232
23	381	0.0025	H-15->L+1 (15%), H-8->L+2 (12%), H-4->L+4 (25%), H-3->L+4 (18%)	94>99 (5)	6>1 (-5)	0.446	5.828
24	377	0.0000	H-17->LUMO (27%), H-3->L+5 (47%)	96>99 (3)	4>1 (-3)	0.062	5.511
25	377	0.0001	H-8->L+1 (24%), H-1->L+5 (41%)	92>100 (8)	8>0 (-8)	0.098	5.563
26	376	0.0002	H-16->LUMO (20%), H-2->L+5 (28%), H-1->I +6 (10%)	94>99 (5)	6>1 (-5)	0.132	5.669
27	374	0.0005	H-4->L+4 (21%), H-3->L+4 (28%), H-2->L+5 (10%)	89>100 (11)	11>0 (- 11)	0.208	5.711
28	373	0.0000	H-1->L+3 (100%)	97>0 (-97)	3>100 (97)	0.000	5.530
29	365	0.0054	H-13->LUMO (13%), H-9->LUMO (28%), H-8->LUMO (10%)	73>99 (26)	27>1 (- 26)	0.645	5.841
30	365	0.0016	H-13->LUMO (44%), H-9->LUMO (16%), H-2->L+6 (17%)	84>99 (15)	16>1 (- 15)	0.349	5.403
31	361	0.0116	H-8->LUMO (15%), H-4->L+5 (13%), H-2->L+4 (39%)	87>100 (13)	13>0 (- 13)	0.945	5.741
32	359	0.0015	H-9->L+1 (46%), H-8->L+2 (15%)	61>99 (38)	39>1 (- 38)	0.343	5.251
33	355	0.0000	H-2->L+3 (99%)	100>0 (-100)	0>100 (100)	0.000	5.540
34	355	0.0014	H-9->L+1 (12%), H-8->L+2 (26%)	80>99 (19)	20>1 (- 19)	0.323	5.243

35	355	0.0000	H-3->L+3 (99%)	100>0 (-100)	0>100 (100)	0.000	5.553
36	352	0.0013	H-9->L+2 (12%), H-5->L+4 (47%)	83>99 (16)	17>1 (- 16)	0.307	5.494
37	349	0.0083	H-13->L+1 (14%), H-4->L+5 (14%), H-3->L+5 (14%)	90>99 (9)	10>1 (- 9)	0.785	5.589
38	349	0.0002	H-4->L+3 (97%)	99>3 (-96)	1>97 (96)	0.119	5.470
39	349	0.0069	H-15->LUMO (11%), H-9->LUMO (15%)	78>97 (19)	22>3 (- 19)	0.715	5.974
40	347	0.0038	H-19->LUMO (19%), H-17->L+1 (17%), H-11->LUMO (23%)	67>99 (32)	33>1 (- 32)	0.532	5.645

Table S1c. Characteristics details of the excited states of $PC_{61}BM$ -1xBTF₂.

_

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	644	0.0020	HOMO->LUMO (97%)	97>99	2>0 (-	1>0 (-	0.526	6.002
				(2)	2)	1)		
2	583	0.0014	H-3->LUMO (40%),	98>99	, 1>1	, 1>0 (-	0.409	5.900
			HOMO->L+1 (45%)	(1)	(0)	1)		
3	567	0.0023	H-2->LUMO (62%),	98>99	1>0 (-	1>0 (-	0.525	5.259
			HOMO->L+1 (25%)	(1)	1)	1)		
4	566	0.0013	H-3->LUMO (49%),	98>99	1>0 (-	1>0 (-	0.394	5.914
			H-2->LUMO (19%),	(1)	1)	1)		
			HOMO->L+1 (21%)					
5	533	0.0007	H-2->L+1 (82%)	98>99	1>1	1>1 (0)	0.290	5.658
				(1)	(0)			
6	522	0.0003	H-3->L+1 (76%)	99>99	1>1	1>1 (0)	0.194	5.356
				(0)	(0)			
7	515	0.0031	H-4->LUMO (73%)	96>99	2>1 (-	2>0 (-	0.578	5.714
				(3)	1)	2)		
8	493	0.0081	HOMO->L+2 (75%)	97>97	2>2	2>1 (-	0.919	6.077
				(0)	(0)	1)		
9	485	0.0010	H-5->LUMO (15%),	21>99	0>0	79>0 (-	0.319	5.375
			H-1->LUMO (77%)	(78)	(0)	79)		
10	484	0.0015	H-5->LUMO (54%),	76>99	1>1	23>0 (-	0.394	5.691
			H-1->LUMO (22%)	(23)	(0)	23)		
11	479	0.0022	H-4->L+1 (62%)	96>99	2>1 (-	2>1 (-	0.469	5.951
				(3)	1)	1)		
12	465	0.0025	H-5->L+1 (40%),	97>98	1>1	2>1 (-	0.494	5.408
			H-3->L+2 (13%),	(1)	(0)	1)		
			H-2->L+2 (36%)					
13	459	0.4527	H-1->L+3 (95%)	3>3 (0)	0>0	97>97	6.645	3.408
					(0)	(0)		
14	457	0.0113	H-5->L+1 (25%),	92>95	1>1	7>3 (-	1.046	6.333
			H-2->L+2 (46%)	(3)	(0)	4)		

15	455	0.0001	H-1->L+1 (96%)	4>99	0>1	96>1 (-	0.092	5.600
16	450	0 0020		(25)	(1)	95) 1 \1 (0)	0 6 0 1	
10	450	0.0038	$\Pi - 2 - 2L + 1 (18\%),$	98>97 (-	1>Z	1>1 (0)	0.601	5.050
17	425	0 0070	$\Pi - 3 - 2L + 2 (0.9\%)$	1) 05 > 07	(1)	2 . 1 /	0 702	4 061
17	425	0.0070	⊓-4->L+2 (91%)	95 <i>2</i> 97 (2)	2>2 (0)	>1 (- 2)	0.793	4.961
18	A77	0 0153	H-6->111MO (92%)	(2) 9>99	0>0	2) 90>1 /-	1 171	1 678
10	722	0.0155	11-0-2201010 (3270)	(90)	(n)	-) 1<0C	1.1/1	4.070
10	108	0 0080	H-5->I+2 (83%)	93>97	2>2	5>1 (-	0 8 8 0	5 803
15	400	0.0005	11 5 7 2 (0570)	(4)	(0)	2 × 1 (4)	0.000	5.005
20	406	0 0002	H-1->I+2 (95%)	() 1>97	(°) 0>2		0 144	5 678
20	400	0.0002	11 1 2 2 (3376)	(96)	(2)	98)	0.114	5.070
21	405	0.0000	HOMO->I+3 (99%)	97>0 (-	2>0(-	2>100	0.000	5.540
		0.0000		97)	2)	(98)	0.000	0.0.0
22	403	0.0018	H-6->L+1 (83%)	14>99	_, 1>1	86>1 (-	0.390	5.715
				(85)	(0)	85)		
23	394	0.0084	H-8->LUMO (54%),	79>99	12>0	9>1 (-	0.840	4.898
			H-3->L+4 (18%)	(20)	(-12)	8)		
24	388	0.0211	HOMO->L+4 (74%)	94>99	3>0 (-	, 3>0 (-	1.321	6.077
				(5)	3)	3)		
25	384	0.0062	H-11->LUMO (16%),	93>99	3>1 (-	4>1 (-	0.712	5.591
			H-2->L+4 (13%),	(6)	2)	3)		
			HOMO->L+5 (41%)					
26	379	0.0001	H-2->L+3 (99%)	98>1 (-	1>0 (-	1>99	0.062	5.593
				97)	1)	(98)		
27	377	0.0032	H-8->LUMO (16%),	82>98	12>1	6>1 (-	0.506	5.385
			H-8->L+1 (51%),	(16)	(-11)	5)		
			H-3->L+4 (10%)					
28	374	0.0000	H-3->L+3 (99%)	99>1 (-	0>0	1>99	0.025	5.514
				98)	(0)	(98)		
29	369	0.0080	H-17->LUMO (10%),	95>99	2>1 (-	3>1 (-	0.792	5.115
			H-3->L+5 (18%),	(4)	1)	2)		
			H-2->L+4 (45%),					
			HOMO->L+5 (11%)					
30	368	0.0030	HOMO->L+6 (42%)	88>97	8>1 (-	4>3 (-	0.485	5.253
				(9)	7)	1)		
31	365	0.0005	H-6->L+2 (88%)	14>97	0>2	86>1 (-	0.195	5.355
22	262	0.0001		(83)	(2)	85)	0.407	F (74
32	363	0.0021	H-15->LUIVIO (17%)	86>98	10>1	4>1 (- 2)	0.407	5.671
22	261	0 0000		(12)	(-9)	3)	0.416	F 2FF
55	201	0.0025	Π -11->LUIVIU (50%),	(12)	>1 (-	>2 (- 1)	0.410	5.255
			HOMO > 1+6(22%)	(12)	0)	4)		
2/	258	0 007/	$H_{14} > 11MO(23\%)$	80>00	7>1 (-	1>1 (-	0 751	1 861
54	220	0.0074	$H_{-1} \rightarrow H_{-1} \rightarrow H$	(10)	6)	>1 (- 2)	0.751	4.004
35	355	0 0133	H-4->L+4 (25%)	82>98	0) 14>1	3) 4>2 (-	1 003	5 995
55	555	0.0100	11 4 2 2 4 (2370)	(16)	(-13)		1.005	5.555
36	355	0 0004	H-4->I+3 (93%)	91>2 (-	2>0(-	-/ 7>98	0 167	5 652
				89)	2)	(91)	0.207	0.001
37	353	0.0044	H-14->LUMO (10%).	82>98	_, 14>1	4>2 (-	0.576	5.975
			H-11->L+1 (15%),	(16)	(-13)	2)		
			H-10->LUMO (14%).	· -/	· -/	,		
			H-3->L+6 (20%)					

38	350	0.0104	H-11->L+1 (12%), H-8->L+1 (12%), H-3->L+4 (15%),	90>99 (9)	6>1 (- 5)	4>1 (- 3)	0.878	6.171
			H-2->L+5 (11%)					
39	349	0.0062	H-10->LUMO (10%),	83>97	12>1	4>2 (-	0.676	5.762
			H-3->L+6 (10%),	(14)	(-11)	2)		
			H-2->L+6 (23%)					
40	348	0.0025	H-11->L+1 (27%),	80>99	15>1	5>1 (-	0.431	5.644
			H-10->LUMO (13%),	(19)	(-14)	4)		
			H-4->L+4 (12%)					

Table S1d. Characteristics details of the excited states of $PC_{61}BM-1xBTF_2$ -para.

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	671	0.0000	HOMO->LUMO (98%)	98>99	1>0	1>0 (-1)	0.076	5.552
			. ,	(1)	(-1)	. ,		
2	619	0.0000	H-3->LUMO (10%),	98>99	1>0	1>1 (0)	0.025	5.536
			H-2->LUMO (14%),	(1)	(-1)			
			HOMO->L+1 (68%)					
3	608	0.0000	H-2->LUMO (73%),	99>99	0>0	1>0 (-1)	0.036	5.540
			HOMO->L+1 (19%)	(0)	(0)			
4	606	0.0000	H-3->LUMO (83%),	99>99	0>0	1>0 (-1)	0.025	5.528
			H-2->LUMO (12%)	(0)	(0)			
5	543	0.0001	H-4->LUMO (21%),	99>99	0>0	0>1 (1)	0.088	5.514
			H-4->L+1 (33%),	(0)	(0)			
			H-3->L+1 (16%),					
			H-2->L+1 (26%)					
6	539	0.0000	H-4->LUMO (67%),	99>99	1>0	0>0 (0)	0.051	5.542
			H-2->L+1 (12%)	(0)	(-1)			
7	532	0.0002	H-3->L+1 (51%),	99>99	0>0	1>1 (0)	0.130	5.422
			H-2->L+1 (42%)	(0)	(0)			
8	519	0.0000	H-4->L+1 (58%),	99>99	1>0	1>1 (0)	0.025	5.544
			H-3->L+1 (24%),	(0)	(-1)			
			H-2->L+1 (15%)					
9	486	0.0005	H-1->LUMO (99%)	1>99	0>0	99>0 (-	0.223	5.319
				(98)	(0)	99)		
10	458	0.1797	H-6->LUMO (33%),	40>77	3>0	57>22	4.183	3.845
			H-5->LUMO (38%),	(37)	(-3)	(-35)		
			H-1->L+2 (22%)					
11	458	0.3139	H-6->LUMO (10%),	12>22	1>0	88>78	5.527	2.493
			H-5->LUMO (10%),	(10)	(-1)	(-10)		
			H-1->L+2 (76%)					
12	454	0.0002	H-1->L+1 (95%)	2>99	0>0	98>1 (-	0.127	5.604
				(97)	(0)	97)		
13	448	0.0006	H-6->L+1 (46%),	49>99	3>0	47>1 (-	0.246	5.498
			H-5->L+1 (43%)	(50)	(-3)	46)		
14	439	0.0014	HOMO->L+3 (88%)	95>96	2>3	3>1 (-2)	0.359	5.295
				(1)	(1)			
15	431	0.0022	H-6->LUMO (48%),	51>99	3>0	46>0 (-	0.450	5.483
			H-5->LUMO (45%)	(48)	(-3)	46)		

16	425	0.0001	H-3->L+3 (38%),	99>96 (-	0>3	1>1 (0)	0.076	5.539
			H-2->L+3 (59%)	3)	(3)			
17	413	0.0001	HOMO->L+2 (98%)	97>1 (-	1>0	1>99	0.098	5.621
				96)	(-1)	(98)		
18	412	0.0088	H-7->L+1 (12%),	68>97	4>1	28>2 (-	0.880	6.203
			H-6->L+1 (26%),	(29)	(-3)	26)		
			H-5->L+1 (27%),					
			H-3->L+3 (18%),					
			H-2->L+3 (10%)					
19	409	0.0064	H-6->L+1 (17%),	78>98	2>2	20>1 (-	0.748	6.214
			H-5->L+1 (18%),	(20)	(0)	19)		
			H-4->L+3 (15%),					
			H-3->L+3 (25%),					
			H-2->L+3 (16%)					
20	406	0.0018	H-4->L+3 (79%)	95>97	2>2	3>1 (-2)	0.393	5.234
				(2)	(0)			
21	405	0.0004	H-7->LUMO (87%)	83>99	13>1	3>0 (-3)	0.178	5.526
				(16)	(-12)			
22	397	0.0026	H-7->L+1 (59%),	87>99	10>1	3>1 (-2)	0.465	5.107
			HOMO->L+4 (18%)	(12)	(-9)			
23	387	0.0167	H-7->L+1 (15%),	93>93	5>0	2>7 (5)	1.171	4.978
			HOMO->L+4 (59%)	(0)	(-5)			
24	387	0.0011	H-2->L+2 (92%)	99>6 (-	0>0	1>94	0.306	5.390
				93)	(0)	(93)		
25	384	0.0000	H-3->L+2 (97%)	99>1 (-	0>0	1>99	0.025	5.527
				98)	(0)	(98)		
26	384	0.0006	HOMO->L+5 (63%)	94>96	3>1	2>4 (2)	0.219	5.595
				(2)	(-2)			
27	381	0.0005	H-17->LUMO (15%),	97>97	2>1	2>2 (0)	0.200	5.535
			HOMO->L+6 (52%)	(0)	(-1)			
28	379	0.0023	H-15->L+1 (11%),	92>99	3>1	5>0 (-5)	0.435	5.240
			H-4->L+4 (32%),	(7)	(-2)			
			H-3->L+4 (13%),					
			H-2->L+4 (14%)					
29	374	0.0080	H-4->L+4 (27%),	92>99	4>0	4>1 (-3)	0.797	4.967
			H-3->L+4 (22%),	(7)	(-4)			
			H-2->L+4 (14%)					
30	373	0.0002	H-16->LUMO (36%),	95>98	4>1	1>1 (0)	0.130	5.659
			HOMO->L+7 (12%)	(3)	(-3)			

Table S	81e. (Characteristics	details	of the	excited sta	tes of PC	$_{61}BM$	-1xBTF ₂ @	conf3.
---------	--------	-----------------	---------	--------	-------------	-----------	-----------	-----------------------	--------

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	649	0.0016	HOMO->LUMO (72%),	97>99	2>0 (-	1>0 (-1)	0.465	5.830
			HOMO->L+1 (25%)	(2)	2)			
2	638	0.0017	HOMO->LUMO (25%),	97>99	2>0 (-	1>1 (0)	0.483	5.710
			HOMO->L+1 (70%)	(2)	2)			
3	594	0.0006	H-2->LUMO (92%)	99>99	1>0 (-	1>0 (-1)	0.268	5.799
				(0)	1)			
4	570	0.0013	H-3->LUMO (21%),	99>99	1>0 (-	1>1 (0)	0.395	5.435
			H-2->L+1 (72%)	(0)	1)			

5	544	0.0000	H-4->LUMO (51%), H-3->LUMO (29%)	98>99 (1)	1>0 (- 1)	1>0 (-1)	0.072	5.511
6	532	0.0006	H-4->LUMO (11%), H-3->LUMO (32%), H-3->L+1 (33%), H-2->L+1 (19%)	99>99 (0)	1>0 (- 1)	1>1 (0)	0.260	5.436
7	530	0.0005	H-4->LUMO (33%), H-3->LUMO (12%), H-3->L+1 (44%)	98>99 (1)	1>0 (- 1)	1>1 (0)	0.248	5.332
8	510	0.0006	H-4->L+1 (83%)	96>99 (3)	1>0 (- 1)	3>1 (-2)	0.264	5.593
9	485	0.0042	HOMO->L+3 (86%)	97>98 (1)	2>1 (- 1)	1>1 (0)	0.656	6.152
10	475	0.0005	H-1->LUMO (99%)	0>99 (99)	0>0 (0)	100>0 (- 100)	0.226	5.320
11	464	0.0007	H-1->L+1 (98%)	0>99 (99)	0>0 (0)	100>1 (- 99)	0.255	5.779
12	460	0.0586	H-6->L+1 (11%), H-5->L+1 (51%), H-2->L+3 (15%), H-1->L+2 (11%)	64>87 (23)	1>0 (- 1)	35>12 (- 23)	2.395	7.857
13	459	0.4073	H-1->L+2 (86%)	8>12 (4)	0>0 (0)	92>88 (- 4)	6.303	11.755
14	454	0.0045	H-5->LUMO (48%), H-5->L+1 (15%), H-2->L+3 (16%)	74>99 (25)	1>1 (0)	25>1 (- 24)	0.657	5.012
15	449	0.0011	H-3->L+3 (82%)	98>98 (0)	1>1 (0)	2>1 (-1)	0.329	5.375
16	442	0.0111	H-5->LUMO (24%), H-2->L+3 (48%)	88>98 (10)	1>1 (0)	11>1 (- 10)	1.021	5.632
17	425	0.0067	H-4->L+3 (85%)	96>98 (2)	2>1 (- 1)	2>1 (-1)	0.778	5.995
18	416	0.0000	HOMO->L+2 (99%)	97>0 (- 97)	2>0 (- 2)	1>100 (99)	0.051	5.500
19	415	0.0009	H-6->LUMO (81%), H-5->LUMO (13%)	36>99 (63)	1>0 (- 1)	63>0 (- 63)	0.277	5.527
20	411	0.0159	H-6->L+1 (75%), H-5->L+1 (19%)	39>99 (60)	1>0 (- 1)	61>1 (- 60)	1.178	6.325
21	405	0.0022	H-7->LUMO (13%), H-7->L+1 (31%), HOMO->L+4 (32%)	92>98 (6)	5>1 (- 4)	4>1 (-3)	0.439	5.734
22	396	0.0026	H-7->LUMO (47%), HOMO->L+5 (10%)	87>98 (11)	5>1 (- 4)	8>1 (-7)	0.469	5.282
23	390	0.0005	H-1->L+3 (83%)	11>98 (87)	0>1 (1)	88>1 (- 87)	0.199	5.354
24	389	0.0050	H-5->L+3 (47%), H-1->L+3 (16%)	61>98 (37)	3>1 (- 2)	36>1 (- 35)	0.641	4.961
25	387	0.0000	H-2->L+2 (99%)	99>0 (- 99)	1>0 (- 1)	1>100 (99)	0.000	5.542
26	384	0.0022	H-10->LUMO (10%), H-10->L+1 (15%), HOMO->L+4 (10%), HOMO->L+5 (23%)	89>97 (8)	6>1 (- 5)	5>2 (-3)	0.428	5.515

27	380	0.0080	H-10->LUMO (17%), H-10->L+1 (11%), H-7->L+1 (10%)	89>98 (9)	9>1 (- 8)	2>1 (-1)	0.806	5.766
28	375	0.0000	H-3->L+2 (99%)	99>0 (- 99)	0>0 (0)	1>100 (99)	0.025	5.540
29	373	0.0147	H-10->L+1 (32%), H-7->LUMO (12%), HOMO->L+4 (18%), HOMO->L+5 (16%)	91>98 (7)	7>1 (- 6)	2>1 (-1)	1.081	4.469
30	370	0.0043	H-7->L+1 (16%), H-2->L+4 (26%), HOMO->L+5 (24%)	94>97 (3)	5>1 (- 4)	2>2 (0)	0.584	5.417
31	369	0.0035	H-7->L+1 (18%), H-2->L+4 (24%), HOMO->L+4 (18%)	92>98 (6)	6>1 (- 5)	2>1 (-1)	0.522	5.735
32	366	0.0000	H-4->L+2 (99%)	98>0 (- 98)	1>0 (- 1)	1>100 (99)	0.025	5.511
33	365	0.0164	H-15->LUMO (10%), HOMO->L+6 (41%)	91>98 (7)	7>1 (- 6)	2>1 (-1)	1.127	6.565
34	363	0.0014	H-2->L+5 (42%), HOMO->L+7 (12%)	93>97 (4)	5>1 (- 4)	1>2 (1)	0.332	5.533
35	360	0.0090	H-11->LUMO (32%), HOMO->L+6 (12%)	75>98 (23)	24>1 (-23)	1>1 (0)	0.829	6.225
36	358	0.0028	H-14->LUMO (13%), H-4->L+4 (10%), H-3->L+4 (16%)	90>98 (8)	9>1 (- 8)	1>1 (0)	0.464	5.699
37	352	0.0136	H-10->LUMO (22%), H-2->L+5 (20%), H-2->L+6 (13%)	92>97 (5)	6>1 (- 5)	2>1 (-1)	1.006	6.039
38	350	0.0008	H-3->L+4 (14%), H-3->L+5 (21%)	84>97 (13)	8>1 (- 7)	8>2 (-6)	0.238	5.554
39	348	0.0007	H-6->L+3 (65%), H-5->L+3 (14%)	46>95 (49)	, 1>1 (0)	53>4 (- 49)	0.224	5.361
40	347	0.0025	H-6->L+2 (54%), H-5->L+2 (38%)	45>3 (- 42)	1>0 (- 1)	54>97 (43)	0.425	5.132

Table S1f. Characteristics details of the excited states of $PC_{61}BM$ -2xBTF₂.

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	566	0.0001	HOMO->LUMO (87%)	96>94 (- 2)	2>1 (-1)	1>5 (4)	0.084	5.526
2	564	0.0003	H-1->LUMO (90%)	97>96 (- 1)	1>1 (0)	2>3 (1)	0.195	5.530
3	519	0.0109	HOMO->L+1 (52%), HOMO->L+2 (13%), HOMO->L+3 (24%)	96>47 (- 49)	2>1 (-1)	1>52 (51)	1.096	5.833
4	509	0.0118	H-1->L+1 (53%), H-1->L+2 (13%), H-1->L+3 (24%)	97>47 (- 50)	1>1 (0)	2>52 (50)	1.133	5.167
5	493	0.0092	H-4->LUMO (19%), HOMO->L+4 (77%)	96>97 (1)	2>0 (-2)	1>2 (1)	0.981	4.643

6	488	0.0134	H-5->LUMO (10%), H-1->L+4 (84%)	97>97 (0)	1>0 (-1)	2>2 (0)	1.181	5.894
7	483	0.0137	H-4->LUMO (72%), HOMO->L+4 (15%)	97>95 (- 2)	1>1 (0)	2>5 (3)	1.187	4.607
8	477	0.0047	H-5->LUMO (83%)	_, 96>98 (2)	1>1 (0)	3>2 (- 1)	0.687	5.341
9	463	0.0326	H-4->L+1 (53%), H-4->L+2 (13%), H-4->L+2 (24%)	95>45 (- 50)	(0) 1>1 (0)	4>54 (50)	1.790	3.837
10	458	0.6000	H-3->L+3 (24%) H-3->L+1 (17%), H-3->L+2 (26%), H-2->L+2 (14%), H-2->L+3 (30%)	3>28 (25)	0>1 (1)	97>71 (-26)	7.644	13.146
11	457	0.3092	H-3->L+1 (16%), H-3->L+2 (30%), H-2->L+2 (12%), H-2->L+3 (32%)	1>28 (27)	0>1 (1)	99>72 (-27)	5.481	7.256
12	445	0.0070	H-5->L+1 (43%), H-5->L+2 (11%), H-5->L+3 (20%), H-4->L+4 (18%)	96>55 (- 41)	1>1 (0)	3>44 (41)	0.812	5.696
13	436	0.0015	H-6->LUMO (90%)	88>98 (10)	1>1 (0)	11>2 (- 9)	0.374	5.893
14	430	0.0218	H-5->L+1 (11%), H-4->L+4 (74%)	96>87 (- 9)	1>1 (0)	3>12 (9)	1.411	5.527
15	426	0.0157	H-5->L+4 (83%)	95>93 (- 2)	1>0 (-1)	4>6 (2)	1.193	5.441
16	425	0.0000	H-1->L+3 (22%), HOMO->L+2 (17%), HOMO->L+3 (42%)	97>26 (- 71)	2>1 (-1)	2>74 (72)	0.062	5.499
17	424	0.0000	H-1->L+1 (21%), H-1->L+2 (37%), HOMO->L+1 (12%), HOMO->L+2 (21%)	97>29 (- 68)	1>1 (0)	2>70 (68)	0.044	5.504
18	422	0.0000	H-1->L+1 (12%), H-1->L+2 (21%), HOMO->L+1 (21%), HOMO->L+2 (37%)	97>29 (- 68)	2>1 (-1)	2>70 (68)	0.044	5.504
19	421	0.0000	H-1->L+2 (17%), H-1- >L+3 (43%), HOMO- >L+3 (22%)	97>26 (- 71)	1>1 (0)	2>74 (72)	0.051	5.506
20	420	0.0001	H-2->LUMO (98%)	0>98 (98)	0>1 (1)	100>2 (-98)	0.111	5.564
21	418	0.0001	H-3->LUMO (98%)	0>98 (98)	0>1 (1)	100>2 (-98)	0.098	5.505
22	403	0.0002	H-6->L+1 (50%), H-6->L+2 (13%), H-6->L+3 (23%)	89>48 (- 41)	(-) 1>1 (0)	10>51 (41)	0.116	5.610
23	396	0.0002	H-2->L+1 (60%), H-2->L+2 (12%), H-2->L+3 (27%)	0>43 (43)	0>1 (1)	100>56 (-44)	0.142	5.612
24	395	0.0003	H-3->L+1 (58%), H-3->L+2 (17%),	0>42 (42)	0>1 (1)	100>57 (-43)	0.148	5.435

			H-3->L+3 (24%)					
25	390	0.0014	H-6->L+4 (69%)	83>97 (14)	2>0 (-2)	15>2 (- 13)	0.342	5.635
26	387	0.0166	H-7->LUMO (77%)	22>97	0>1	77>2 (-	1.171	5.962
				(75)	(1)	75)		
27	385	0.0209	H-8->LUMO (68%)	31>97	1>1	68>2 (-	1.310	4.976
				(66)	(0)	66)		
28	385	0.0000	H-2->L+1 (30%),	1>28	0>1	99>71	0.000	5.542
			H-2->L+2 (60%)	(27)	(1)	(-28)		
29	384	0.0000	H-4->L+2 (27%),	96>25 (-	1>1	2>74	0.000	5.546
			H-4->L+3 (64%)	71)	(0)	(72)		
30	384	0.0000	H-4->L+1 (33%),	96>29 (-	1>1	3>70	0.025	5.554
			H-4->L+2 (57%)	67)	(0)	(67)		
31	384	0.0000	H-3->L+2 (25%),	0>26	0>1	100>74	0.000	5.543
			H-3->L+3 (67%)	(26)	(1)	(-26)		
32	383	0.0008	H-8->LUMO (19%),	65>96	2>1	33>3 (-	0.263	5.654
			H-1->L+5 (12%),	(31)	(-1)	30)		
			HOMO->L+5 (10%),					
			HOMO->L+6 (26%)					
33	382	0.0000	H-2->L+4 (95%)	2>98	0>0	98>2 (-	0.062	5.581
~ ^	224	0.0004		(96)	(0)	96)		
34	381	0.0001	H-3->L+4 (94%)	3>98	0>0	97>2 (-	0.084	5.612
25	200	0.0010		(95)	(0)	95)	0.004	E 422
35	380	0.0019	HOMO->L+5 (66%),	93>94	3>1	5>6 (1)	0.394	5.422
26	274	0 0000	HOMO->L+6 (11%)		(-2)	2 . 76	0.000	4-
36	374	0.0000	H-5->L+2 (35%),	96>24 (-	1>1	3>/6	0.036	5.545
27	274	0.0000	H-5->L+3 (59%)	/2)	(0)	(73)	0.025	F F 24
37	374	0.0000	H-5->L+1 (36%),	96>31 (-	1>1	3>68	0.025	5.531
			H-5->L+2 (50%),	65)	(0)	(65)		
20	272	0.04.00	H-5->L+3 (13%)		2 . 1	2 . 5 (2)	1 222	F F 0 2
38	3/3	0.0188	H-1->L+5 (64%),	96>95 (-	2>1	3>5 (2)	1.223	5.582
20	272	0.0076	HUIVIU->L+6 (15%)	1) 05 x 06	(-1)	4.24	1 470	4 200
39	372	0.0276	H-1->L+6 (78%)	95>96	1>1	4>3 (-	1.478	4.298
40	200	0.0005		(L) 97 > 01	(U) 2 \ 1	10 50/	0.014	F 4C2
40	308	0.0085	п-4->L+б (15%),	87>91	3>1 (_2)	-) א<חד כ	0.814	5.463
			H-1->L+8 (11%),	(4)	(-2)	2)		
			HUIVIU->L+7 (43%)					

Table S1g. Characteristics details of the excited states of $PC_{61}BM-2xBTF_2@conf3$.

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	1063	0.0024	HOMO->LUMO (86%)	97>97 (0)	0>0 (0)	3>3 (0)	0.731	5.219
2	1044	0.0040	HOMO->L+1 (90%)	97>97 (0)	0>0 (0)	3>2 (-1)	0.940	6.472
3	956	0.0005	H-1->LUMO (78%),	97>97 (0)	0>0 (0)	2>3 (1)	0.319	5.324
			HOMO->LUMO (12%)					
4	868	0.0071	H-1->L+1 (86%)	97>97 (0)	0>0 (0)	2>2 (0)	1.143	6.041
5	660	0.0063	H-4->LUMO (76%),	95>97 (2)	3>0 (-3)	3>3 (0)	0.941	5.981
			H-4->L+1 (11%)					
6	655	0.0028	H-4->LUMO (15%),	95>97 (2)	3>0 (-3)	3>2 (-1)	0.619	5.713
			H-4->L+1 (77%)					

7	623	0.0062	H-5->LUMO (77%), HOMO->L+2 (11%)	94>97 (3)	2>0 (-2)	4>3 (-1)	0.908	4.931
8	607	0.0150	H-5->L+1 (36%), HOMO->L+2 (41%)	95>96 (1)	1>0 (-1)	4>3 (-1)	1.389	6.664
9	599	0.0031	H-5->L+1 (50%), HOMO->L+2 (39%)	95>96 (1)	1>0 (-1)	4>3 (-1)	0.629	5.180
10	589	0.0014	H-1->L+2 (87%)	97>96 (-1)	0>1 (1)	2>4 (2)	0.412	5.205
11	555	0.0123	H-6->LUMO (65%),	64>97	3>0 (-3)	34>3 (-	1.204	4.769
			H-6->L+1 (21%)	(33)		31)		
12	545	0.0006	H-6->LUMO (14%),	16>97	1>0 (-1)	, 84>3 (-	0.267	5.538
			H-2->LUMO (40%).	(81)	()	81)		
			H-2->L+1 (33%)	()		,		
13	542	0.0065	H-6->L+1 (54%),	48>97	2>0 (-2)	50>3 (-	0.865	4.982
			H-2->LUMO (23%)	(49)	()	47)		
14	541	0.0026	H-3->LUMO (86%)	4>97 (93)	0>0 (0)	, 95>3 (-	0.551	6.047
			()	()	()	92)		
15	537	0.0011	H-2->LUMO (29%),	6>97 (91)	0>0 (0)	, 93>2 (-	0.353	5.279
			H-2->L+1 (59%)	()	()	91)		
16	519	0.0000	H-3->L+1 (97%)	1>97 (96)	0>0 (0)	99>2 (-	0.072	5.603
						97)		
17	513	0.0038	H-8->LUMO (14%),	13>97	0>0 (0)	87>3 (-	0.648	4.913
			H-7->LUMO (73%)	(84)		84)		
18	508	0.0031	H-8->LUMO (32%),	26>97	1>0 (-1)	72>3 (-	0.576	5.303
			H-8->L+1 (40%),	(71)		69)		
			H-7->L+1 (17%)					
19	494	0.0008	HOMO->L+3 (97%)	97>2 (-95)	0>0 (0)	3>98 (95)	0.295	5.821
20	484	0.0005	HOMO->L+4 (92%)	97>1 (-96)	0>0 (0)	3>99 (96)	0.233	5.332
21	481	0 0097	H-9->I +1 (12%)	50>96	2>1 (-1)	48>3 (-	0 996	6 381
21	401	0.0057	H-8->IUMO (26%)	(46)	2 /1(1)	45)	0.550	0.501
			H-8->I +1 (17%)	(10)		13)		
			H-7->I UMO (14%).					
			HOMO->L+5 (11%)					
22	480	0.0008	H-4->L+2 (74%)	88>95 (7)	3>1 (-2)	10>4 (-6)	0.291	5.759
22	475	0 0130	H-9->1+1 (23%)	58>97	2>1 (-1)	40>3 (-	1 1 97	A 811
25	475	0.0135	H-8->I UMO (12%).	(39)	2 /1(1)	37)	1.107	4.011
			H-7->I+1 (28%).	(00)		077		
			H-4->L+2 (11%)					
24	468	0.0033	H-9->LUMO (59%).	75>97	2>0 (-2)	23>3 (-	0.576	5.802
			H-8->L+1 (11%),	(22)	- ()	20)		
			H-7->L+1 (11%)	ζ, γ		,		
25	468	0.0045	H-1->L+3 (96%)	97>2 (-95)	0>0 (0)	3>98 (95)	0.671	4.915
26	462	0 0002	H-1->I +4 (93%)	98>0 (-98)	0>0 (0)	2>100	0 137	5 443
20	102	0.0002	11 1 / 2 / 1 (00/0)	50 / 0 (50)	0 / 0 (0)	(98)	0.107	5.115
27	460	0.5189	H-3->I +3 (66%).	14>22 (8)	0>0 (0)	85>78 (-	7.123	12.577
		0.0100	H-2->I +4 (11%)	(0)	0 0 (0)	7)	/ 1220	
28	459	0.1518	H-9->LUMO (12%).	69>77 (8)	1>2 (1)	31>21 (-	3.851	9.340
			H-3->L+3 (11%).	- (-)	(-)	10)		
			HOMO->L+5 (46%)			-,		
29	458	0.2521	H-3->L+3 (17%),	2>3 (1)	0>0 (0)	98>97 (-	4.954	5.277
			H-2->L+4 (78%)	. ,		1)		
30	456	0.0070	H-9->L+1 (35%),	58>95	2>1 (-1)	41>5 (-	0.823	5.016
			H-7->L+1 (30%)	(37)		36)		

31	446	0.0074	H-10->LUMO (25%),	92>96 (4)	2>2 (0)	6>3 (-3)	0.838	6.130
32	441	0.0033	H-1->L+5 (48%) H-10->LUMO (14%), H-5->L+2 (27%),	93>96 (3)	2>1 (-1)	5>3 (-2)	0.553	5.952
33	435	0.0025	H-10->L+1 (66%)	87>97 (10)	3>0 (-3)	10>2 (-8)	0.486	5.127
34	434	0.0088	H-10->LUMO (11%), H-5->L+2 (40%), HOMO->L+6 (13%)	91>96 (5)	3>1 (-2)	6>3 (-3)	0.899	6.268
35	425	0.0084	H-10->LUMO (30%), HOMO->L+6 (29%)	88>97 (9)	5>1 (-4)	7>2 (-5)	0.872	5.443
36	422	0.0010	H-13->LUMO (39%)	72>97 (25)	13>0 (- 13)	15>3 (- 12)	0.300	5.668
37	413	0.0100	H-6->L+2 (63%)	70>96 (26)	4>1 (-3)	26>3 (- 23)	0.936	5.310
38	410	0.0271	H-1->L+6 (48%)	85>98 (13)	10>1 (-9)	5>2 (-3)	1.537	6.094
39	407	0.0052	H-13->L+1 (46%), HOMO->L+6 (20%)	73>97 (24)	13>0 (- 13)	14>2 (- 12)	0.670	5.502
40	402	0.0000	H-2->L+2 (96%)	1>95 (94)	0>1 (1)	99>4 (- 95)	0.025	5.556

Table S1h. Characteristics details of the excited states of $PC_{61}BM$ -3xBTF₂.

Excit. No.	Wavelength (nm)	f	Main Contributions	fullerene	BTF ₂	PC ₆₁ BM	μ _{ge} (D)	μ _e (D)
1	1030	0.0050	HOMO->LUMO (98%)	97>97 (0)	0>0	3>3 (0)	1.045	4.858
					(0)			
2	910	0.0016	H-1->LUMO (91%)	96>97 (1)	0>0	4>3 (-1)	0.550	5.962
					(0)			
3	813	0.0050	HOMO->L+1 (96%)	97>95 (-	0>0	3>4 (1)	0.928	5.656
				2)	(0)			
4	780	0.0142	H-1->L+1 (88%)	95>96 (1)	0>0	4>4 (0)	1.535	6.155
					(0)			
5	627	0.0124	H-5->LUMO (10%),	69>97	2>0 (-	29>3 (-	1.287	6.476
			H-4->LUMO (74%)	(28)	2)	26)		
6	616	0.0049	HOMO->L+5 (86%)	95>96 (1)	0>0	5>4 (-1)	0.804	4.768
					(0)			
7	597	0.0077	H-4->L+1 (11%),	91>96 (5)	1>0 (-	8>4 (-4)	0.988	5.351
			H-1->L+5 (77%)		1)			
8	572	0.0271	H-4->L+1 (61%),	72>96	2>0 (-	25>4 (-	1.816	7.188
			H-1->L+5 (14%)	(24)	2)	21)		
9	557	0.0003	H-7->LUMO (30%),	80>97	2>0 (-	19>3 (-	0.194	5.666
			H-6->LUMO (61%)	(17)	2)	16)		
10	536	0.0242	H-7->LUMO (53%),	69>97	1>0 (-	30>3 (-	1.661	4.745
			H-6->LUMO (28%)	(28)	1)	27)		
11	521	0.0026	H-2->LUMO (87%)	6>97 (91)	0>0	94>3 (-	0.540	5.666
					(0)	91)		
12	506	0.0001	HOMO->L+2 (100%)	97>0 (-	0>0	3>100	0.095	5.466

				97)	(0)	(97)		
13	504	0.0007	HOMO->L+3 (91%)	97>0 (- 97)	0>0 (0)	3>100 (97)	0.270	5.787
14	503	0.0161	H-6->L+1 (77%)	80>96 (16)	2>0 (- 2)	19>4 (- 15)	1.315	4.568
15	503	0.0001	H-3->LUMO (89%)	10>97 (87)	0>0 (0)	90>3 (- 87)	0.116	5.517
16	499	0.0003	HOMO->L+4 (94%)	96>2 (- 94)	0>0 (0)	4>98 (94)	0.167	5.671
17	498	0.0001	H-5->LUMO (85%), H-4->LUMO (11%)	21>96 (75)	1>0 (- 1)	79>4 (- 75)	0.095	5.594
18	497	0.0076	H-8->L+1 (10%), H-7->L+1 (75%)	63>95 (32)	2>0 (- 2)	35>4 (- 31)	0.895	6.087
19	491	0.0058	H-8->LUMO (53%), H-6->L+1 (10%)	45>96 (51)	1>0 (- 1)	54>4 (- 50)	0.778	5.348
20	491	0.0000	H-1->L+2 (99%)	96>1 (- 95)	0>0 (0)	4>99 (95)	0.044	5.519
21	489	0.0013	H-1->L+3 (91%)	96>0 (- 96)	0>0 (0)	3>100 (97)	0.362	5.220
22	479	0.0450	H-11->LUMO (57%)	70>96	2>0 (-	28>3 (-	2.140	3.581
				(26)	2)	25)		
23	476	0.0050	H-12->LUMO (11%), H-9->LUMO (27%), H-9->L+1 (27%), H-3->L+1 (16%)	25>96 (71)	0>0 (0)	75>4 (- 71)	0.709	5.971
24	475	0.0004	H-1->L+4 (95%)	96>1 (- 95)	0>0 (0)	3>99 (96)	0.194	5.401
25	472	0.0007	H-2->L+1 (96%)	1>95 (94)	0>0 (0)	99>4 (- 95)	0.267	5.801
26	471	0.0022	H-12->LUMO (20%), H-3->L+1 (43%)	42>96 (54)	1>1 (0)	57>4 (- 53)	0.465	5.884
27	467	0.0029	H-5->L+1 (87%), H-4->L+1 (11%)	19>95 (76)	1>0 (- 1)	80>5 (- 75)	0.536	5.983
28	464	0.0065	H-9->L+1 (16%), H-4->L+5 (26%), H-3->L+1 (25%)	39>95 (56)	1>0 (- 1)	60>4 (- 56)	0.799	6.261
29	461	0.0073	H-9->L+1 (10%), H-4->L+5 (45%), HOMO->L+6 (11%)	61>95 (34)	2>1 (- 1)	37>5 (- 32)	0.849	4.756
30	459	0.6036	H-3->L+3 (13%), H-2->L+4 (80%)	3>2 (-1)	0>0 (0)	97>98 (1)	7.677	12.331

Table S2. Dipole moments of all the structures. μ_g , ground state dipole moment, μ_e , excited state dipole moment, $\Delta \mu_{ge}$, difference between the ground state and excited state (that corresponds to

the ones listed Table 3) dipole moments. The transition electric dipole moment is computed from

 $\mu_{ge} = \left[(\mu_{gx} - \mu_{ex})^2 + (\mu_{gy} - \mu_{ey})^2 + (\mu_{gz} - \mu_{ez})^2 \right]^{1/2}, \text{ while } \Delta \mu_{ge} \text{ is the scalar difference}$ computed as $\Delta \mu_{ge} = \mu_e - \mu_g$.

Structure	μ _g (D)	μ _e (D)	$\Delta \mu_{ge}$ (D)	μ _{ge} (D)
PC ₆₁ BM	5.504	5.519	0.0148	0.484
$PC_{61}BTF_2, 7$	5.537	5.619	0.0819	0.479
PC ₆₁ BM-1xBTF ₂ -para, 10-I	2.863	3.849	0.9818	4.182
PC ₆₁ BM-1xBTF ₂ , 10-I	3.4279	6.002	2.5744	0.526
PC61BM-1xBTF2@conf3, 10-I	5.704	5.830	0.1258	0.464
PC ₆₁ BM-2xBTF ₂ , 10-D	1.2777	5.526	4.2485	0.084
PC ₆₁ BM-2xBTF ₂ @conf3, 10-D	2.7153	5.219	2.5039	0.731
PC ₆₁ BM-3xBTF ₂ , 10-D	2.1667	5.656	3.4892	0.928

References

- 1. J. L. Brusso, O. D. Hirst, A. Dadvand, S. Ganesan, F. Cicoira, C. M. Robertson, R. T. Oakley, F. Rosei and D. F. Perepichka, *Chem. Mater.*, 2008, **20**, 2484-2494.
- 2. S. Ram and R. E. Ehrenkaufer, *Tetrahedron Lett.*, 1984, **25**, 3415-3418.
- 3. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu and W. You, *Angewandte Chemie International Edition*, 2011, **50**, 2995-2998.
- 4. *WO Pat.,* WO 2012/169605 A1, 2012.
- 5. J.-L. Wang, Z.-F. Chang, X.-X. Song, K.-K. Liu and L.-M. Jing, *J. Mater. Chem. C*, 2015, **3**, 9849-9858.
- 6. R. Kumar, S. Khan, N. Gupta, S. Naqvi, K. Gaurav, C. Sharma, M. Kumar, P. Kumar and S. Chand, *Carbon*, 2016, **107**, 765-773.
- 7. S. Manku, F. Wang and D. G. Hall, *J. Comb. Chem.*, 2003, **5**, 379-391.
- 8. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.

- 9. A. Schäfer, H. Horn and R. Ahlrichs, *J. Chem. Phys.*, 1992, **97**, 2571-2577.
- 10. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, **240**, 283-290.
- 11. Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.