Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Cytochromes P450 metabolism studies of [6]-gingerol, [8]-gingerol, and [10]-gingerol by liver microsomes of human and different species of tissue combined with expressed CYP enzymes.

Chanjuan Chen,^{†a} Xintong Chen,^{†a} Qingmei Mo,^a Jie Liu,^b Xinsheng Yao,^a Xin Di, ^b Zifei Qin, ^{*c} Liangliang He, ^{*a} and Zhihong Yao^{*ad}

^{*a*}International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China

^bSchool of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China

^cDepartment of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China

^dGuangzhou Key Laoratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, P. R. China

[†]These authors contributed equally to this work.

*Correspondence authors:

Prof. Zhihong Yao, E-mail: <u>yaozhihong_jnu@163.com;</u>

Dr. Liangliang He, E-mail: heliangliang5878 @163.com;

Dr. Zifei Qin, E-mail: <u>qzf1989@163.com;</u>

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Figure S1-2.

Figure S1. The HRESIMS spectrum (S1-1) and ¹³C-NMR spectrum (S1-2) of reference standard of [6]gingerol.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 52 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-30 ZO209F2 20190610005 194 (1.563)

Figure S2-1.

Figure S2. The HRESIMS spectrum (S2-1) and 13C-NMR spectrum (S2-2) of reference standard of (3R,5S)-

[6]-gingerdiol.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 52 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-30 ZO2Q8B 20190610014 189 (1.526)

Figure S3-1.

Figure S3-2.

Figure S3. The HRESIMS spectrum (S3-1) and 13C-NMR spectrum (S3-2) of reference standard of (3S,5S)-

[6]-gingerdiol.

Page 1

1: TOF MS ES+

Figure S4-2.

Figure S4. The HRESIMS spectrum (S4-1) and ¹³C-NMR spectrum (S4-2) of reference standard of [8]gingerol.

(3R,5S)-[8]-gingerdiol

Page 1

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 133 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-500 H: 0-1000 O: 0-200 Na: 0-1

70%M-GINGER 20170118_3 1817 (14.552) 1: TOF MS ES+ 1.56e+005 347.2211 100-% 348.2246 137.0612 177.0536 455.3143 499.3332 579.3657 691.4261 749.3655857.4699 500 600 700 800 900 328 2670 983.5347 1092.5543 1175.6471 m/z 1000 1100 1200 0+ 100 **T** Τ, 300 400 200 Minimum: Maximum: -1.5 50.0 5.0 10.0 Conf (%) Formula 65.29 C19 H32 O4 Na 34.71 C21 H31 O4 Calc. Mass 347.2198 347.2222 mDa 1.3 -1.1 PPM 3.7 -3.2 i-FIT 130.5 131.1 Norm 0.426 1.058 Mass 347.2211 DBE 3.5

Figure S5-1.

Figure S5-2.

Figure S5. The HRESIMS spectrum (S5-1) and 13C-NMR spectrum (S5-2) of reference standard of (3R,5S)-

[8]-gingerdiol.

Figure S6. The HRESIMS spectrum (S6-1) and 13C-NMR spectrum (S6-2) of reference standard of (3S,5S)-[8]-gingerdiol.

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 2

Monoisotopic Mass, Even Electron Ions 142 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-60 H: 0-100 O: 0-50 23Na: 0-1 ZL13 20171017-8 251 (2.023) Cm (248:256)

Figure S7-1.

Figure S7-2.

Figure S7. The HRESIMS spectrum (S7-1) and ¹³C-NMR spectrum (S7-2) of reference standard of [10]gingerol.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions Elements Used:

C: 0-80 H: 0-100 O: 0-20 Z02Q16D 20190715-6 259 (2.094)

Figure S8-1.

Figure S8-2.

Figure S8. The HRESIMS spectrum (S8-1) and 13C-NMR spectrum (S8-2) of reference standard of (3R,5S)-[10]-gingerdiol.

Single Mass Analysis Tolerance = 10.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 68 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-80 H: 0-100 O: 0-20

Figure S9-1.

Figure S9-2.

Figure S9. The HRESIMS spectrum (S9-1) and 13C-NMR spectrum (S9-2) of reference standard of (3S,5S)-[10]-gingerdiol.

Table S1. Kinetic parameters d	erived for gingerols-related metabolit	s by HLM, DLM, MkLM, MLM, I	MpLM, and RLM (Mean \pm SD).

Compound	Enzyme	Metabolite	Vmax	Km (µM)	Ksi (µM)	Clint	Model
		s	(pmol/min/mg)			$(\mu L/min/mg)$	
	HLM	M _{6G} -1	123.82±3.47	181.30±11.30	NA	0.88 ± 0.05	MM
		M _{6G} -5	432.80±7.02	149.10±5.82	NA	2.90±0.12	MM
	DLM	M _{6G} -5	343.4±18.48	138.9±17.7	NA	2.47±0.34	MM
	MkLM	M _{6G} -5	415.2±12.88	47.88±5.008	NA	8.71±0.95	MM
		M _{6G} -8	297.8±11.30	18.45±2.583	NA	22.13±4.3	MM
6G	MLM	M _{6G} -3	131.3±8.753	118.2±15.21	NA	1.11±0.15	MM
		M _{6G} -5	1558±84.13	188.7±21.73	NA	8.24±1.05	MM
	MpLM	M _{6G} -5	97.04±4.497	173.4±17.83	NA	$0.58{\pm}0.08$	MM
	RLM	M _{6G} -1	254.82±7.72	180.90±12.21	NA	1.41 ± 0.10	MM
		M _{6G} -4	1280.00±181.70	170.80±28.48	80.57±9.48	7.49±1.50	SI
		M _{6G} -5	531.50±54.44	409.90±88.52	NA	1.30±0.25	MM
	HLM	M _{8G} -1	81.41±1.85	$8.78{\pm}0.88$	820.3±88.35	9.08±0.92	SI
		M _{8G} -2	390.40±4.88	1.93±0.005	805.2±28.80	202.00±13.11	SI
		M _{8G} -6	848.90±38.23	109.00±13.39	NA	7.79±1.01	MM
	DLM	M _{8G} -2	121.8±8.199	98.93±20.05	NA	1.23±0.28	MM
		M _{8G} -6	398.2±7.538	94.85±5.458	NA	4.21±0.28	MM
		M _{8G} -7	95.03±4.818	88.05±2.059	NA	1.44±0.11	MM
	MkLM	M _{8G} -2	38.39±2.527	80.01±13.83	NA	0.84±0.15	MM
8G		M _{8G} -6	284.2±12.42	18.18±3.912	NA	18.35±4.05	MM
	MLM	M _{8G} -4	23.5±0.484	25.21±2.102	NA	0.93±0.08	MM
		M _{8G} -6	470.4±51.45	72.59±12.89	252.8±48.2	8.48±1.33	SI
	MpLM	M _{8G} -2	182.1±14.83	243.4±14.83	NA	0.87±0.15	MM
		M _{8G} -6	437.8±28.88	102.4±20.08	NA	4.27±0.88	MM
	RLM	M _{8G} -1	98.07±8.53	25.88±3.88	433.10±80.09	3.72±0.81	SI
		M _{8G} -2	841.20±17.13	8.53±0.45	225.9±17.09	98.19±7.22	SI
		M _{8G} -6	103±13.42	249.5±82.7	NA	0.41±0.12	MM
	HLM	M _{10G} -1	88.42±8.47	29.82±8.08	73.83±14.08	2.24±0.54	SI
		M _{10G} -2	348.10±11.83	5.27±0.898	897.50±101.50	88.04±9.02	SI
		M _{10G} -4	1957.00±233.90	138.70±23.38	233.90±47.12	14.11±2.91	SI
	DLM	M _{10G} -2	157.0±14.74	137.7±23.3	NA	1.14±0.22	MM
100		M _{10G} -4	225.1±17.34	148.9±20.17	NA	1.51±0.23	MM
10G	MKLM	M _{10G} -1	95.15±5.87	107.7±18.84	NA	0.88±0.15	MM
		M _{10G} -4	1074±150.9	294.5±88.19	NA	3.85±0.98	MM
	MLM	M _{10G} -1	88.27±4.27	33.98±8.20	NA	2.80±0.49	MM
		M _{10G} -2	24.85±1.00	9.72±1.83	NA	2.54±0.49	MM
		M _{10G} -4	1022±83.82	88.89±14.97	NA	11.78±2.243	MM

MpLM	M _{10G} -1	99.54±3.535	28.09±3.994	NA	3.54±0.52	MM
	M _{10G} -2	204.9±3.885	28.07±2.01	NA	$7.88{\pm}0.82$	MM
	M _{10G} -3	830.8±83.58	1239±155.4	NA	0.51±0.08	MM
	M _{10G} -4	1292±82.78	228.4±29	NA	5.71±0.82	MM
RLM	M _{10G} -1	189.50±7.81	7.04±1.083	433.10±80.09	24.07±3.71	SI
	M _{10G} -2	250.00±8.53	8.48±0.811	828.40±35.00	$38.58{\pm}5.00$	SI
	M _{10G} -4	78.33±3.35	39.43±8.82	NA	1.94±0.35	MM

Compoun	Enzvme	Metabolite	Vmax	Km (uM)	Km (uM)	Km (uM)	Ksi (uM)	Clint	Mode
d	2	S	(pmol/min/mg	····· (µ.)		(µL/min/m	1		
8G	CYP1A2	M _{6G} -1	79.78 ± 2.98	$212.83{\pm}18.5$	NA	$0.38{\pm}0.03$	MM		
		M _{6G} -3	$288.40{\pm}7.93$	135.80 ± 9.43	NA	2.12 ± 0.18	MM		
	CYP2C1	M _{6G} -1	$287.55{\pm}11.38$	30.21±2.84	549.21±88.57	$8.85{\pm}0.88$	SI		
	9	M _{6G} -4	$3308.40{\pm}129.0$	52.22 ± 73.84	$558.80{\pm}80.74$	$83.31{\pm}5.08$	SI		
8G	CYP1A2	M _{8G} -1	$142.00{\pm}11.48$	28.27 ± 4.98	$495.20{\pm}109.8$	$5.02{\pm}0.97$	SI		
		M _{8G} -5	$284.30{\pm}27.51$	$100.80{\pm}15.5$	$258.80{\pm}47.91$	2.83 ± 0.49	SI		
	CYP2C1	M _{8G} -1	$398.90{\pm}19.88$	8.71 ± 0.80	$131.50{\pm}15.50$	59.19 ± 7.89	SI		
	9	M _{8G} -5	$588.00{\pm}81.30$	13.00 ± 3.17	$59.44{\pm}14.27$	45.20±12.8	SI		
	CYP2E1	M _{8G} -1	340.50 ± 48.83	121.30±25.1	$389.90{\pm}109.8$	2.81 ± 0.70	SI		
	CYP2D6	M _{8G} -4	5.23±0.25	14.52 ± 3.78	NA	0.38 ± 0.09	MM		
		M _{8G} -8	$14.92{\pm}0.87$	3.48±1.12	3135 ± 2078	4.29±1.4	SI		
10G	CYP1A2	M _{10G} -2	120.90±23.58	77.84±23.77	129.20±33.70	1.58 ± 0.57	SI		
	CYP2B8	M _{10G} -2	82.81±5.94	25.35±4.81	$110.80{\pm}17.74$	$2.48{\pm}0.51$	SI		
		M _{10G} -4	47.99±7.42	38.8±11.09	389.3±142	1.31 ± 0.45	SI		
	CYP2C1	M _{10G} -1	887.70 ± 237.80	9.90±4.54	5.48 ± 2.48	87.48 ± 39.1	SI		
	CYP2E1	M _{10G} -1	719.50±74.71	73.55±12.02	170.80 ± 83.59	9.83±1.89	SI		
		M _{10G} -2	$112.90{\pm}14.44$	20.03 ± 5.23	$102.90{\pm}22.49$	5.84 ± 1.84	SI		

Table S2. Kinetic parameters derived for gingerols-related metabolites by expressed CYP enzymes (Mean \pm SD).