Performance evaluation of $\mathrm{Zr}(\mathrm{CUR}) / \mathrm{NiCo}_{2} \mathrm{~S}_{4} / \mathrm{CuCo}_{2} \mathrm{~S}_{4}$ and $\mathrm{Zr}(\mathrm{CUR}) / \mathrm{CuC}_{\mathrm{O}_{2} \mathrm{~S}_{4}} / \mathrm{Ag}_{2} \mathrm{~S}$ composites for photocatalytic degradation of the methyl parathion pesticide using a spiral-shaped photocatalytic reactor

Hamideh Zolfaghari ${ }^{\text {a }}$, Fakhri Yousefia, ${ }^{\text {, }}$, Mehrorang Ghaedia, ${ }^{\text {,**, }}$, Soleiman Mosleh ${ }^{\text {b }}$
${ }^{a}$ Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran
${ }^{\mathrm{b}}$ Polymer Engineering Department, Faculty of Gas and Petroleum, Yasouj University, Gachsaran, 75813-56001, Iran
* Corresponding Authors: fyousefi@yu.ac.ir, m ghaedi@yu.ac.ir

Supplementary information

The details of DOM for solving the radiative transport equation (RTE) in the spiralshaped photoreactor

The radiative transport equation (RTE) was solved using the discrete ordinate method (DOM) for the description of the light irradiation inside the spiral-shaped photoreactor. The COMSOL Multiphysics ${ }^{\circledR}$ software was used as a powerful CFD tool for numerical simulation. This software has a special Module for solving the radiative transfer equation through discretization. The applied technique contains a numerical integration which considered a set of discrete directions for the radiation and associated quadrature weights. Since the angular space is continuous, the radiative intensity was determined for any direction (Ω), then the specified equations were solved numerically by the discretization of the angular space, as follows [1]:

$$
\begin{equation*}
\int_{4 \pi} I(\Omega) d \Omega \approx \sum_{j=1}^{n} \omega_{j} I_{j} \tag{S-1}
\end{equation*}
$$

where in this equation ω_{j} denotes the i-th quadrature weight.
For any discrete ordinate, Eq. (S-2) was applied as follows [1-3]:
$S_{i} \cdot \nabla I_{i}=\kappa I_{b}(T)-\beta I_{i}+\frac{\sigma_{s}}{4 \pi} \sum_{j=1}^{n} \omega_{j} I_{j} \Phi\left(S_{j} \cdot S_{i}\right)$
where \mathbf{S}_{i} refers to the i-th discrete ordinate, and I_{i} denotes the i-th component of the radiative intensity.

The boundary conditions for solving Eq. (S-2) are presented as follows:
$I_{i . b n d}=\varepsilon I_{b}(T)+\frac{1-\varepsilon}{\pi} q_{\text {out }}$

The ${ }^{q_{\text {out }} \text { was calculated using Eq. (S-4): }}$
$q_{r . \text { out }}=\sum_{n \cdot \Omega_{j}>0} \omega_{j} I_{j} n \Omega_{j}$

The additional computational details are presented at Table S-1, as follows:

Table S1. The additional computational details.

Parameter	Value	Considerations
Photocatalyst absorption coefficient $\left({ }^{\kappa_{a}}\right)$	$5.028 \times 10^{5} \mathrm{~m}^{-1}$	Estimated at wavelength (λ) of 395 nm
Light intensity	$10 \mathrm{~W} \cdot \mathrm{~m}^{-2}$	Imposed on the reactor surface
Unstructured grids	$287,000 \mathrm{nodes}$	$1,538,000$ tetrahedral cells
Purely absorbent medium	$\kappa_{a=1}$ $\sigma_{s=0}$	Used as the boundary condition.
Non-reflective wall	$\varepsilon=0$	Used as the boundary condition.

[1] https://www.comsol.com/blogs/author/nancy-bannach/ [10/5/2022]
[2]https://www.comsol.com/blogs/heat-transfer-in-participating-media-and-the-discrete-ordinates-method/ [10/5/2022]
[3]https://www.comsol.com/blogs/4-methods-to-account-for-radiation-in-participatingmedia/ [10/5/2022]

Table S2. Specification of used LED

Items	Min.	Type	Max.	Unit
Power	-	-	14.40	$\mathrm{~W} / \mathrm{m}$
Luminous	1000	-	3500	mcd
Intensity				
Dominant Wavelength	395	-	405	nm
50\% Power Angle	-	120	-	Deg.

Table S3. The empirical results of the MP degradation process.

Run	X_{1}	X_{2}	X_{3}	X_{4}	Y
1	0.4	4	15	20	20.39
2	0.6	6	20	30	77.85
3	0.8	4	15	40	99.86
4	0.6	6	20	30	76.99
5	0.6	6	20	30	77.18
6	0.4	8	15	40	89.53
7	0.8	8	15	20	61.02
8	0.6	6	20	30	77.27
9	0.4	8	25	40	72.01
10	0.8	4	25	40	70.12
11	0.4	4	25	20	3.74
12	0.8	8	25	20	41.50
13	0.6	6	20	30	84.50
14	0.6	6	30	30	57.47
15	0.6	2	20	30	58.34
16	0.6	6	20	30	84.68
17	0.6	6	20	10	19.21
18	1	6	20	30	58.95
19	0.6	10	20	30	98.77
20	0.2	6	20	30	28.84
21	0.6	6	10	30	99.15
22	0.6	6	20	50	98.04

Table S4. The statistical evidence along with analysis of variance.

Source of variation	Sum of Squares	Degree of Freedom	Mean Square	F-Value	P-value
Model	16360.82	14	1168.63	13401.06	<0.0001
X_{1}	453.19	1	453.19	5196.91	<0.0001
X_{2}	817.29	1	817.29	9372.15	<0.0001
X_{3}	1738.68	1	1738.68	19938.02	<0.0001
X_{4}	3107.08	1	3107.08	35629.93	<0.0001
$\mathrm{X}_{1} \mathrm{X}_{2}$	139.30	1	139.30	1597.39	<0.0001
$\mathrm{X}_{1} \mathrm{X}_{3}$	28.46	1	28.46	326.40	<0.0001
$\mathrm{X}_{1} \mathrm{X}_{4}$	7.44	1	7.44	85.31	<0.0001
$\mathrm{X}_{2} \mathrm{X}_{3}$	10.93	1	10.93	125.31	<0.0001
$\mathrm{X}_{2} \mathrm{X}_{4}$	44.28	1	44.28	507.78	<0.0001
$\mathrm{X}_{3} \mathrm{X}_{4}$	15.37	1	15.37	176.29	<0.0001
$\mathrm{X}_{1}{ }^{2}$	2743.19	1	2743.19	31457.06	<0.0001
X_{2}	63.64	1	63.64	729.80	<0.0001
$\mathrm{X}_{3}{ }^{2}$	68.75	1	68.75	788.35	<0.0001
$\mathrm{X}_{4}{ }^{2}$	1122.81	1	1122.81	12875.65	<0.0001
Residual	0.52	6	0.09		
Lack of Fit	0.095	2	0.05	0.44	0.6694
Pure Error	0.43	4	0.11		
Cor Total	16489.14	21			

Table S5. The maximum adsorption capacity $\left(\mathrm{q}_{\max }\right)$ of prepared samples.

Sample	$\mathbf{q}_{\text {max }}$ (mg. $\mathbf{g}^{\mathbf{- 1}}$)
$\mathrm{Zr}(\mathrm{CUR}) / \mathrm{NiCo}_{2} \mathrm{~S}_{4} / \mathrm{CuCo}_{2} \mathrm{~S}_{4}$	1124.42
$\mathrm{Zr}(\mathrm{CUR}) / \mathrm{CuCo}_{2} \mathrm{~S}_{4} / \mathrm{Ag}_{2} \mathrm{~S}$	1008.05
$\mathrm{NiCo}_{2} \mathrm{~S}_{4}$	642.25
$\mathrm{CuCo}_{2} \mathrm{~S}_{4}$	595.60
$\mathrm{Ag}_{2} \mathrm{~S}$	287.15

Table S6. Confirmation Tests.

Run	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	MP Degradation (\%)		
					Actual	Predicted	Error $\mathbf{(\%)}$
1	0.5	4	20	25	27.02	29.17	7.37
2	0.4	6	15	40	45.28	43.83	3.31
3	0.8	4	25	30	60.45	61.10	1.06
4	0.2	6	10	10	16.29	15.22	7.03
5	0.6	10	30	40	95.33	96.37	1.08

Table S7. The quantitative information for MP degradation along the reactor.

Turn	$\mathbf{1}$				$\mathbf{2}$	$\mathbf{3}$
$\boldsymbol{\theta}$	90	270	450	630	810	990
MP\% Degradation	3.52	9.25	11.25	24.68	37.99	46.02
Turn				$\mathbf{5}$		
$\boldsymbol{\theta}$	1170	1350	1530	1710	1890	$\mathbf{6}$
$\mathbf{M P \%}$ Degradation	51.43	60.95	71.01	77.2	84.95	98.78

