Supporting Information

Metal-organic frameworks derived single-atom catalysts for electrochemical CO₂ reduction

Mengna Xie,^{‡ab} Jiawei Wang,^{‡ab} Xian-Long Du,^{*acd} Na Gao,^{ad} Tao Liu,^e Zhi Li,^e GuoPing Xiao,^{acd} Tao Li^b and Jian-Qiang Wang^{acd}

^a Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied
 Physics, Chinese Academy of Sciences, Shanghai 201800

^b Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China

^c University of Chinese Academy of Sciences, Beijing 100049, China

University of Science and Technology, Shanghai 200237, China

^d Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China

^e Shandong Energy Group Co., Ltd., Jinan 250014, China

* Corresponding Author

E-mail: <u>duxianlong@sinap.ac.cn</u> ‡These authors contributed equally to this work.

Figure S1. (a) and (b) SEM images of ZIF-8. It is obvious that the synthesized ZIF-8 exhibits a uniform rhomb dodecahedral shape.

Figure S2. SEM characterization of M-N-C. SEM images of (a) Fe-N-C, (b) Ni-N-C, (c) Mn-N-C, (d) Co-N-C and (e) Cu-N-C.

Figure S3. TEM characterization of M-N-C. TEM images of (a) Fe-N-C, (b) Ni-N-C, (c) Mn-N-C, (d) Co-N-C and (e) Cu-N-C.

Figure S4. XRD pattern of ZIF-8.

Figure S5. Energy dispersive spectroscopy (EDS) characterization of Fe-N-C. No visible Zn signal locating at 8.63 keV was detected in Fe-N-C, suggesting low residual Zn content.

Figure S6. Energy dispersive spectroscopy (EDS) characterization of Ni-N-C. No visible Zn signal locating at 8.63 keV was detected in Ni-N-C, suggesting low residual Zn content.

Figure S7. Energy dispersive spectroscopy (EDS) characterization of Mn-N-C. No visible Zn signal locating at 8.63 keV was detected in Fe-N-C, suggesting low residual Zn content.

Figure S8. Energy dispersive spectroscopy (EDS) characterization of Co-N-C. No visible Zn signal locating at 8.63 keV was detected in Co-N-C, suggesting low residual Zn content.

Figure S9. Energy dispersive spectroscopy (EDS) characterization of Cu-N-C. No visible Zn signal locating at 8.63 keV was detected in Cu-N-C, suggesting low residual Zn content.

Figure S10. (a) Fe 2p spectrum of Fe-N-C, (b) Ni 2p spectrum of Ni-N-C, (c) Mn 2p spectrum of Mn-N-C, (d) Co 2p spectrum of Co-N-C and (e) Cu 2p spectrum of Cu-N-C

Figure S11. FT-IR spectra of Fe-N-C.

Figure S12. Nyquist plots of M-N-C catalysts in CO₂-saturated 0.5 M KHCO₃ solution at -0.5 V vs RHE.

Figure S13. CO₂ physisorption isotherm at 273 K.

Figure S14. Electrocatalytic CO₂RR Performance of N-C catalyst using a flow cell (a)
LSV curves in pure N₂- and CO₂-saturated 0.5 M KHCO₃ at a scan rate of 10 mV s⁻¹.
(b) FE for H₂ production measured in CO₂-saturated 0.5 M KHCO₃

Figure S15. CV curves of (a) Fe-N-C, (b) Ni-N-C, (c) Mn-N-C, (d) Co-N-C and (e) Cu-N-C. The CV measurements were performed in CO₂-saturated 0.5 M KHCO₃ at various scan rates: 2, 4, 6, 8 and 10 mV s⁻¹. (e) A plot of changing current density against scan rates for electrochemically active surface area (ECSA) measurements. As clearly shown, ECSA of the M-N-C catalysts increased in the following order of Fe-N-C > 7 Ni-N-C > Mn-N-C > Co-N-C > Cu-N-C, coinciding with the FE_{CO} results.

Figure S16. TG-DTG patterns of the composite of Fe(NO₃)₃ adsorbed within ZIF-8.

Sample	Metal content (wt%)
Fe-N-C	0.48
Ni-N-C	0.65
Mn-N-C	0.58
Co-N-C	0.52
Cu-N-C	0.68

Table S1. Metal contents of all M-N-C samples determined by ICP-MS