Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Support material

Post-Synthesis of Sn-Beta zeolite by Aerosol method

The synthesis of Sn-Beta-x-D: $0.10g\ SnCl_2\cdot 2H_2O$ was dissolved in 38g deionized water, and 2g De-Al-Beta zeolite was added. After stirring for 5 hours, it was dried in an oven at 110 °C for 3 hours. Finally the powder is calcined at 550 °C for 6 hours to obtain Sn-Beta zeolite, which is denoted as Sn-Beta-x-D.

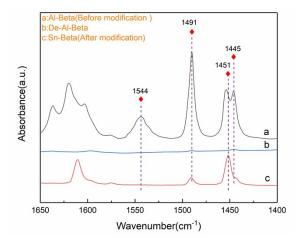
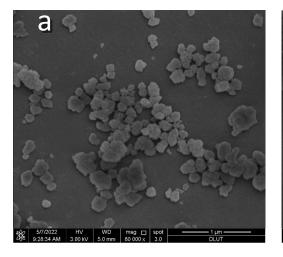
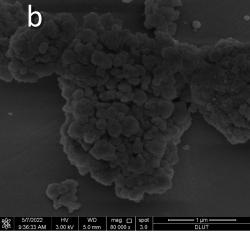
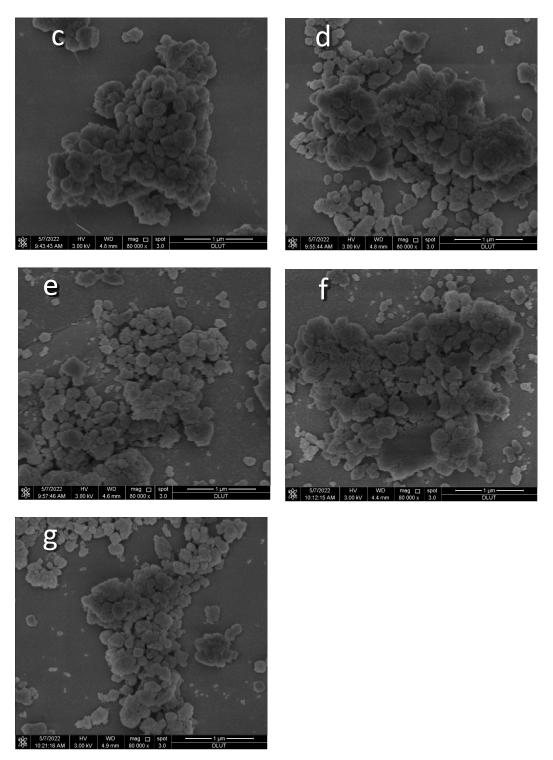





Fig. 1 FT-IR spectra of the Al-Beta, De-Al-Beta and Sn-Beta samples after pyridine adsorption at 298K for 30 min and desorption at 423K for 35 min

 $\label{eq:seminary} \mbox{Fig. 2 SEM images of the De-Al-Beta (a), Sn-Beta-1 (b), Sn-Beta-2 (c), Sn-Beta-2.5(d) , Sn-Beta-3(e), Sn-Beta-4(f) and Sn-Beta-5(g) samples}$

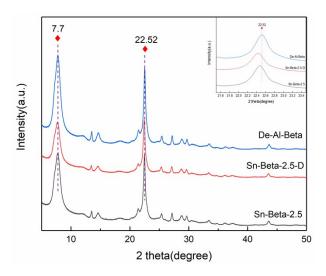


Fig. 3 XRD patterns of De-Al-Beta ${\, \cdot \,}$ Sn-Beta-2.5 and Sn-Beta-2.5-D

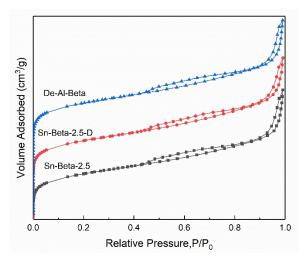


Fig. 4 Nitrogen adsorption-desorption isotherms of De-Al-Beta · Sn-Beta-2.5 and Sn-Beta-2.5-D

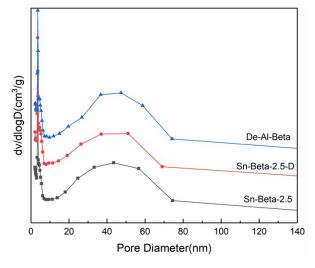


Fig. 5 Corresponding pore size distributions of De-Al-Beta · Sn-Beta-2.5 and Sn-Beta-2.5-D

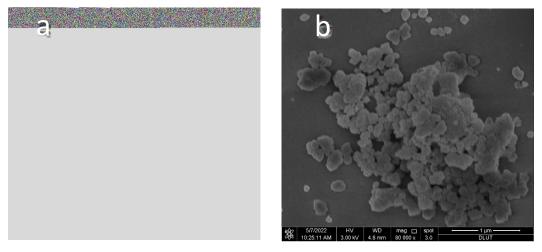


Fig. 6 SEM images of the Sn-Beta-2.5 (a), Sn-Beta-2.5-D (b)

Table 1
Textural properties of Sn-Beta-2.5 and Sn-Beta-2.5-D

Sample	S _{BET} ²⁾	S _{ext} ³⁾	V _{Total} ⁴⁾	V _{micro} 5)	V _{meso} 6)	RC ⁷⁾
	m^2/g	m^2/g	cm ³ /g	cm ³ /g	cm ³ /g	%
Sn-Beta-2.5-D	663	144	0.46	0.20	0.26	69
Sn-Beta-2.5	638	138	0.46	0.20	0.26	78

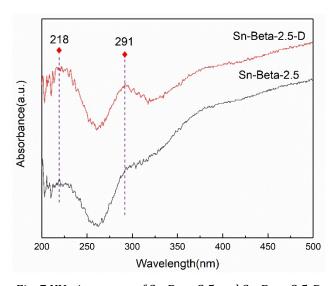


Fig. 7 UV-vis spectra of Sn-Beta-2.5 and Sn-Beta-2.5-D

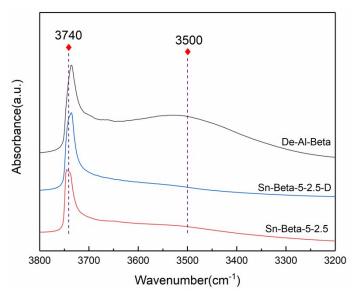


Fig.8 FT-IR spectra of the De-Al-Beta ${\bf \cdot}$ Sn-Beta-2.5 and Sn-Beta-2.5-D

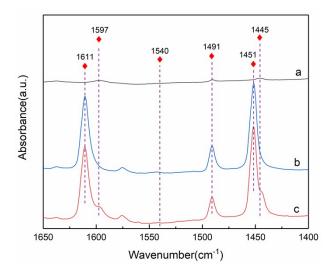


Fig. 9 FT-IR spectra of the De-Al-Beta \cdot Sn-Beta-2.5 and Sn-Beta-2.5-D samples after pyridine adsorption at 298K for 30 min and desorption at 423K for 35 min

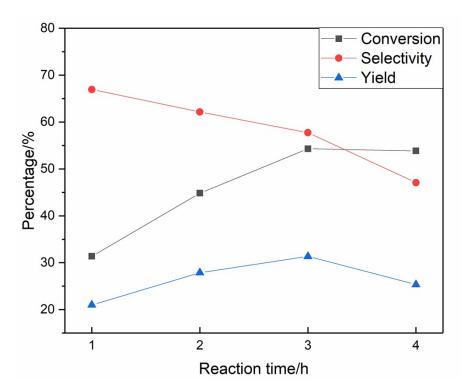


Fig. 10 Catalytic performances of the Sn-Beta-2.5 zeolite at different reaction times

Table 2
Table 5 Si/Sn molar ratios and Lewis acid contents of Sn-Beta-2.5-D and Sn-Beta-2.5

Sample	Si/Sn ¹⁾	LS ²)
		$\mu \text{mol/g}$
Sn-Beta-5-2.5-D	33	144
Sn-Beta-5-2.5	37	171

注 $^{1)}$ Determined by ICP-OES; $^{2)}$ Calculating according to the equation given in the literature