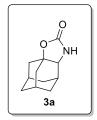
Supporting Information

Annulated carbamates are precursors for the ring-contraction of the adamantane framework

Radim Hrdina,
** Oksana M. Holovko-Kamoshenkova,
a, d Ivana Císařová, b Filip Koucký, b Oldřich Machalický $^{\rm c}$

Content

1.	General info		S 3
2.	Experimenta	-	S4
	-	ation and characterization of starting materials 3-4	S4
	2.1.1	Compound 3a	S4
	2.1.2	Compound 3b	S4
	2.1.3	Compound 3 c	S5
	2.1.4	Compound 3d	S5
	2.1.5	Compound 3e	S 6
	2.1.6	Compound 4aa	S 6
	2.1.7	Compound 4ab	S 7
	2.1.8	Compound 4bb	S 8
	2.1.9	Compound 4cb	S8-S9
	2.1.10	1	S9-S10
	2.1.11	Compound 4ea	S10
	2.1.12	Compound 4eb	S10-S11
	2.2 Prepar	ation and characterisation of compounds 5-26	S12
	2.2.1	Compound 5	S12
	2.2.2	Compound 6	S12-S13
	2.2.3	Compound 7	S13-14
	2.2.4	Compound 8	S14
	2.2.5	Compound 9	S15
	2.2.6	Compound 10-I1	S15-S16
	2.2.7	Compound 10-I2	S16
	2.2.8	Compound 11	S17
	2.2.9	Compound 12	S17-S18
	2.2.10	Compound 13	S18-S19
	2.2.11	Compound 14	S19
	2.2.12	Compound 15	S20
	2.2.13	1	S21
	2.2.14	-	S21-S22
	2.2.15	-	S22
	2.2.16	1	S22-S23
	2.2.17	Compound 23	S23
	2.2.18	•	S24
	2.2.19	1	S24-S25
	2.2.20	-	S25
3.	Kinetic stud	1	S25-76
4.		a of compounds 3-26	S77-138
5.	DFT analyse	1	S139-S143
6.	•	phic data collection and refinement details	S144-S146

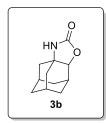

1. General information

NMR spectra were recorded on 400 or 600 MHz machine at RT (25 °C) unless otherwise stated. ¹H-NMR chemical shifts are given in ppm relative to Me₄Si with the solvent resonance used as the internal standard (CDCl₃ δ = 7.26 ppm). ¹³C-NMR (60, 101 or 150 MHz) chemical shifts are given in ppm relative to Me₄Si with the solvent resonance used as the internal standard (CDCl₃ = 77.16 ppm). IR spectra were recorded using an ATR sampler and are reported in wave numbers (cm⁻¹). Melting points (m.p.) were measured in open capillary tubes and are uncorrected. All reactions involving air sensitive compounds were carried out under dry and inert atmosphere (N₂ or argon) by means of an inert gas/vacuum double manifold line and standard Schlenk techniques. High resolution mass spectra were recorded with Brucker Micro TOF LC.

2. Experimental procedures

2.1 Preparation and characterization of starting materials 3-4.

2.1.1 Compound 3a

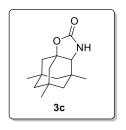


¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 1.57-1.87 (m, 7H), 1.99-2.02 (m, 1H), 2.06-2.16 (m, 3H), 2.27 (m, 2H), 3.65 (m, 1H), 5.71 (bs, 1H)

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 29.1 (CH₂), 29.2 (CH), 31.1 (CH), 31.2 (CH), 36.3 (CH₂), 36.4 (CH₂), 37.2 (CH₂), 40.1 (CH₂), 64.1 (CH), 80.6 (C), 161.4 (C).

Compound **3a** was prepared in two steps from adamantan-1-ol according to the procedure described in Hrdina, R.; Larrosa, M.; Logemann, C. J. Org. Chem. **2017**, *82*, 4891–4899.

2.1.2 Compound 3b

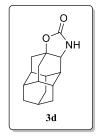


¹**H** NMR (400 MHz, CDCl₃): δ /ppm = 1.57-1.77 (m, 5H), 1.86-1.96 (m, 5H), 2.05 (m, 1H), 2.13 (m, 1H), 2.43 (m, 1H), 4.13 (d, *J*= 4 Hz, 1H), 5.48 (bs, 1H).

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 27.9 (CH), 29.6 (CH₂), 29.7 (CH), 30.3 (CH), 36.0 (CH₂), 36.4 (CH₂), 39.5 (CH₂), 39.7 (CH₂), 56.7 (C), 85.5 (CH), 161.1 (C).

Compound **3b** was prepared in two steps from adamantan-2-ol according to the procedure described in Hrdina, R.; Larrosa, M.; Logemann, C. *J. Org. Chem.* **2017**, *82*, 4891–4899.

2.1.3 Compound 3c

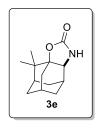


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 0.90 (s, 3H), 0.92 (s, 3H), 0.94 (s, 3H), 0.98-1.02 (m, 1H), 1.08-1.19 (m, 3H), 1.20-1.27 (m, 1H), 1.36-1.40 (m, 1H), 1.43-1.48 (m, 1H), 1.68-1.77 (m, 3H), 3.19 (m, 1H), 5.76 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 25.6 (CH₃), 29.0 (CH₃), 29.3 (CH₃), 33.1 (C), 34.9 (C), 35.7 (C), 42.7 (CH₂), 42.8 (CH₂), 45.3 (CH₂), 50.2 (CH₂), 50.8 (CH₂), 67.8 (CH), 82.7 (C), 161.6 (C).

Compound **3c** was prepared in two steps from 3,5,7-trimethyl-adamantan-1-ol according to the procedure described in Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.1.4 Compound 3d

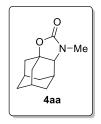


¹**H NMR** (600 MHz, CDCl₃): δ/ppm = 1.59 (m, 1H), 1.68-1.71 (m, 1H), 1.77-1.83 (m, 8H), 1.86-1.88 (m, 1H), 1.94 (m, 1H), 1.98-2.01 (m, 2H), 2.04-2.07 (m, 1H), 2.10 (m, 1H), 2.14-2.19 (m, 2H), 3.6 (m, 1H), 5.01 (bs, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 25.9 (CH), 30.6 (CH), 35.9 (CH₂), 36.7 (CH), 36.8 (CH₂), 37.1 (CH), 37.3 (CH₂), 37.5 (CH₂), 38.3 (CH), 40.1 (CH), 40.2 (CH₂), 40.3 (CH), 65.1 (CH), 80.7 (C), 161.1 (C).

Compound **3d** was prepared in two steps from diamantan-ol according to the procedure described in Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.1.5 Compound 3e

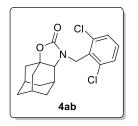


¹**H** NMR (400 MHz, CDCl₃): δ/ppm = 1.15 (s, 3H), 1.18 (s, 3H), 1.44-1.54 (m, 2H), 1.6-1.65 (m, 1H), 1.81-1.86 (m, 1H), 1.96-2.05 (m, 4H), 2.11-2.14 (m, 1H), 2.24-2.26 (m, 1H), 4.09-4.11 (m, 1H), 5.76 (bs, 1H).

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 22.7 (CH₃), 22.8 (CH₃), 29.4 (CH), 30.7 (CH₂), 31.9 (CH), 32.1 (CH₂), 32.2 (CH₂), 33.1 (CH₂), 39.7 (C), 41.3 (CH), 58.7 (CH), 85.1 (C), 161.5 (C).

Compound **3e** was prepared in 5 steps from noradamantane-3-carboxylic acid according to the procedure described in Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.1.6 Compound 4aa



¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.62-1.78 (m, 6H), 1.83-1.86 (m, 1H), 1.96-2.04 (m, 2H), 2.07-2.11 (m, 2H), 2.28 (m, 2H), 2.78 (s, 3H), 3.28 (m, 1H).

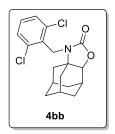
¹³C NMR (101 MHz, CDCl₃): δ /ppm = 29.2 (CH₃), 29.3 (CH), 29.4 (CH₂), 30.3 (C), 31.2 (CH₂), 36.1 (CH), 36.3 (CH₂), 37.8 (CH₂), 40.0 (CH₂), 68.2 (CH), 77.9 (C), 160.6 (C).

Compound **4aa** was prepared from **3a** according to the procedure described in Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.1.7 Compound 4ab

Starting material **3a** (740 mg, 3.84 mmol) was dissolved in THF (8 mL) and the solution was cooled to -15 °C. MeLi (1.6 M solution in Et₂O) 2.4 mL was added dropwise and the reaction mixture was allowed to reach r.t. and stirred for additional 20 minutes. Then 2,6-dichlorobenzyl bromide (1365 mg, 1.5 equiv.) was added to the reaction mixture and the reaction mixture was heated at 50 °C for additional 16 hours. The reaction was quenched with water and the product was extracted using Et₂O. Combined organic fractions were dried over MgSO₄ and the product **4ab** was purified by column chromatography on silica gel using hexane: EtOAc 10:1 as a mobile phase. The compound **4ab** was obtained as a crystalline solid (1.02 g) in 76% yield.

m.p. (cryst. from CDCl₃): 156 °C.


¹**H** NMR (400 MHz, CDCl₃): δ /ppm = 0.87-0.90 (m, 1H), 1.14-1.17 (m, 1H), 1.55 (m, 2H), 1.64-1.74 (m, 3H), 1.94-1.96 (m, 3H), 2.04-2.08 (m, 2H), 2.19 (m, 1H,), 3.45 (m, 1H), 4.52 (d, *J*=12 Hz, 1H), 5.02 (d, *J*=12 Hz, 1H), 7.16-7.20. (m, 1H), 7.29-7.31 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 29.1 (CH), 29.3 (CH₂), 30.7 (CH), 31.1 (CH), 36.1 (CH₂), 36.6 (CH₂), 38.0 (CH₂), 39.9 (CH₂), 44.0 (CH₂), 68.5 (CH), 77.5 (C), 128.7 (2CH), 129.8 (CH), 132.3 (2C), 136.7 (C), 159.7 (C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3086, 3072, 2927, 2868 1749, 1728, 1577, 1560, 1433, 1402, 1433, 1402, 1327, 1306, 1296, 1223, 1205, 1153, 1103. 1088, 1036, 985, 957, 935, 897, 835, 781, 769, 677,611, 575, 517, 411.

HRMS: m/z = 352.0871 ([M+H]⁺; calculated for $C_{18}H_{20}Cl_2NO_2^+$ m/z = 352.0866).

2.1.8 Compound 4bb

Starting material **3b** (370 mg, 1.92 mmol) was dissolved in THF (4 mL) and the solution was cooled to -15 °C. MeLi (1.6 M solution in Et₂O) 1.2 mL was added dropwise and the reaction mixture was allowed to reach r.t. and stirred for 20 minutes. Then 2,6-dichloro-benzyl bromide (682 mg, 1.5 equiv.) was added to the reaction mixture and the reaction mixture was heated at 50 °C for additional 16 hours. Th reaction was quenched with water and the product was extracted using Et₂O. Combined organic fractions were dried over MgSO₄, concentrated *in vacuo* and the product was purified by column chromatography on silica gel using hexane: EtOAc 10:1 as a mobile phase. The compound **4bb** was obtained as a pale yellow solid (581 mg) in 85% yield.

¹**H** NMR (400 MHz, CDCl₃): δ /ppm = 1.16-1.19 (m, 1H), 1.53-1.79 (m, 7H), 1.86-1.93 (m, 2H), 2.07-2.09 (m, 1H), 2.19-2.23 (m, 1H), 2.36-2.39 (m, 1H), 3.95-3.96 (m, 1H,), 4.51 (d, *J*= 12 Hz, 1H), 4.88 (d, *J*= 12 Hz, 1H), 7.16-7.20 (m, 1H), 7.29-7.31 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 27.8 (CH), 29.6 (CH), 29.9 (CH₂), 30.1 (CH), 35.45 (CH₂), 36.0 (CH₂), 36.1 (CH₂), 38.4 (CH₂), 40.7 (2CH₂), 59.5 (C), 83.3 (CH), 128.7 (2CH),129.7 (CH), 133.0 (C), 136.6 (C), 158.9 (C).

IR (neat): \tilde{v} /cm⁻¹ = 3070, 2945, 2925, 2854, 1755, 1562, 1598, 1459, 1435, 1358, 1333, 1259, 1260, 1228, 1182, 1149, 1109, 1074, 1026, 1016, 993, 933, 904, 866, 812, 768, 737, 687, 626, 575, 519, 467, 415

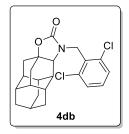
HRMS: m/z = 352.0871 ([M+H]⁺; calculated for $C_{18}H_{20}Cl_2NO_2^+$ m/z = 352.0866).

2.1.9 Compound 4cb

Starting material **3c** (235 mg, 1.0 mmol) was dissolved in THF (2 mL) and the solution was cooled to -15 °C. MeLi (1.6 M solution in Et₂O) 0.7 mL was added dropwise and the reaction mixture was allowed to reach r.t. and stirred for 20 minutes. Then 2,6-dichloro-benzyl bromide (355 mg, 1.5 equiv.) was added to the reaction mixture and the reaction mixture was heated at

50 °C for additional 16 hours. Th reaction was quenched with water and the product was extracted using Et2O. Combined organic fractions were dried over MgSO₄, concentrated *in vacuo* and the product was purified by column chromatography on silica gel using hexane: EtOAc 10:1 as a mobile phase. The compound **4cb** was obtained as a crystalline solid (272 mg) in 69% yield.

m.p. (cryst. from Et₂O): 133.2 °C


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 0.82 (s, 3H), 0.89 (s, 3H), 0.93 (s, 4H), 1.01-1.09 (m, 2H), 1.16-1.19 (m, 1H), 1.26-1.32 (m, 2H), 1.36-1.4 (m, 1H), 1.60-1.66 (m, 1H), 1.70-1.72 (m, 1H), 1.84-1.87 (m, 1H), 3.10 (m, 1H), 4.64 (d, *J*=14Hz, 1H), 4.93 (d, *J*=14Hz, 1H), 7.15 (m, 1H), 7.3 (d, *J*=8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 26.5 (CH₃), 29.0 (CH₃), 29.1 (CH₃), 32.9 (C), 34.9 (C), 36.2 (C), 43.8 (CH₂), 43.9 (CH₂), 45.2 (CH₂), 45.7 (CH₂), 50.0 (CH₂), 52.6 (CH₂), 72.35 (CH), 79.6 (C), 129.0 (CH), 129.2 (2CH),132.8 (2C), 136.0 (C), 160.5 (C).

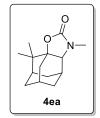
IR (neat): \tilde{v} /cm⁻¹ = 3062, 2952, 2908, 2837, 1755, 1562, 1471, 1439, 1410, 1391, 1344, 1298, 1257, 1207, 1193, 1155, 1109, 1086, 1038, 1018, 997, 962, 914, 895, 854, 829, 775, 721, 706, 667, 636, 607, 561, 530, 501, 463.

HRMS: m/z = 394.1334 ([M+H]⁺; calculated for $C_{21}H_{26}Cl_2NO_2^+$ m/z = 394.1336).

2.1.10 Compound 4db

Starting material **3d** (235 mg, 1.0 mmol) was dissolved in THF (2 mL) and the solution was cooled to -15 °C. MeLi (1.6 M solution in Et₂O) 0.7 mL was added dropwise and the reaction mixture was allowed to reach r.t. and stirred for 20 minutes. Then 2,6-dichloro-benzyl bromide (355 mg, 1.5 equiv.) was added to the reaction mixture and the reaction mixture was heated at 50 °C for additional 16 hours. Th reaction was quenched with water and the product was extracted using Et₂O. Combined organic fractions were dried over MgSO₄, concentrated *in vacuo* and the product was purified by column chromatography on silica gel using hexane: EtOAc 10:1 as a mobile phase. The compound **4db** was obtained as a crystalline solid (260 mg) in 64% yield.

m.p. (cryst. from Et₂O): 210.7 °C.

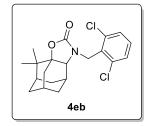

¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 0.96 (m, 1H), 1.09-1.13 (m, 1H), 1.46-1.49 (m, 1H), 1.61-1.75 (m, 9H), 1.81 (m, 1H), 1.90-2.09 (m, 4H), 3.38 (m, 1H), 4.53 (d, *J*= 4 Hz, 1H), 5.00 (d, *J*= 4 Hz, 1H), 7.17-7.21 (m, 1H), 7.30 (s, 1H), 7.32 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 25.6 (CH), 31.1 (2CH), 36.0 (CH₂), 36.5 (CH), 36.6 (CH₂), 37.2 (CH), 37.3 (CH₂), 38.0 (CH), 38.3 (CH₂), 39.9 (CH), 39.92(CH₂) 43.9 (CH₂), 69.3 (CH), 128.7 (CH), 129.8 (2CH), 132.5 (C), 136.9 (2C), 159.8 (C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3087, 2956, 2908, 2870, 2779, 2684, 2648, 1751, 1581, 1562, 1543, 1460, 1435, 1388, 1334, 1302, 1137, 1190, 1159, 1088, 1070, 1011, 962, 941, 897, 831, 816, 785, 773, 762, 692, 658, 580, 546, 496.

HRMS: m/z = 426.1000 ([M+Na]⁺; calculated for C₂₂H₂₃Cl₂NO₂Na⁺ m/z = 426.0998).

2.1.11 Compound 4ea



¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.13 (s, 3H), 1.18 (s, 3H), 1.46-1.50 (m, 1H), 1.54-1.59 (m, 1H), 1.65-1.71 (m, 2H), 1.83-1.87 (m, 1H), 1.99-2.04 (m, 3H,), 2.11-2.14 (m, 1H), 2.16-2.25 (m, 1H), 2.77 (s, 3H), 3.7-3.71 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 22.6 (CH₃), 22.8 (CH₃), 29.4 (CH), 29.5 (CH₃), 31.0 (CH), 31.1 (CH₂), 32.1 (CH₂), 32.8 (CH₂), 33.1 (CH₂), 39.6 (C), 41.5 (CH), 63.0 (CH), 86.2 (C), 160.6 (C).

Compound **4ea** was prepared from **3e** according to the procedure described in Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

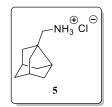
2.1.12 Compound 4eb

Starting material **3e** (110 mg, 0.5 mmol) was dissolved in THF (1 mL) and the solution was cooled to -15 °C. MeLi (1.6 M solution in Et₂O) 0.35 mL was added dropwise and the reaction mixture was allowed to reach r.t. and stirred for 20 minutes. Then 2,6-dichloro-benzyl bromide (177 mg, 1.5 equiv.) was added to the reaction mixture and the reaction mixture was heated at 50 °C for additional 16 hours. Th reaction was quenched with water and the product was extracted using Et₂O. Combined organic fractions were dried over MgSO₄, concentrated *in vacuo* and the product was purified by column chromatography on silica gel using hexane:

EtOAc 10:1 as a mobile phase. The compound was obtained as a crystalline solid (120 mg) in 63% yield.

m.p. (cryst. from EtOAc): 210 - 211 °C.

¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 0.79-0.84 (m, 1H), 1.07-1.23 (m, 7H), 1.32-1.36 (m, 1H), 1.46-1.57 (m, 2H), 1.87-1.95 (m, 5H), 2.08-2.11 (m, 1H), 3.86 (m, 1H), 4.5 (d, J=16 Hz, 1H), 5.02 (d, J=12 Hz, 1H), 7.16-7.26 (m, 1H), 7.29-7.31 (m, 2H).


¹³C NMR (101 MHz, CDCl₃): δ /ppm = 22.6 (CH₃), 22.9 (CH₃), 29.3 (CH), 30.9 (CH₂), 31.8 (CH), 32.0 (CH₂), 33.0 (CH₂), 33.3 (CH₂), 39.4 (C), 41.0 (CH), 44.2 (CH₂), 63.5 (CH), 81.8 (C), 128.7 (CH), 129.8 (2CH), 132.3 (C), 136.7 (2C), 159.8 (C).

IR (neat): \tilde{v} /cm⁻¹ = 2999, 2924, 2887, 2868, 1749, 1562, 1537, 1475, 1435, 1404, 1319, 1292, 1211, 1146, 1103, 1090, 1032, 974, 964, 945, 920, 903, 866, 837, 831, 781, 764, 733, 673, 663, 528, 480, 455, 430.

HRMS: m/z = 380.1181 ([M+H]⁺; calculated for C₂₀H₂₄Cl₂NO₂⁺ m/z = 380.1106).

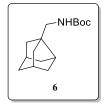
2.2 Preparation and characterisation of compounds 5-26

2.2.1 Compound 5

Starting material **3a** (100 mg, 0.5 mmol) was dissolved in dry 1,2,4-trichlorobenzene (8 mL) and 150 mg (2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 120 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (38 mg, 1 mmol) was added on the top. Then dry THF 2 mL was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of product, free amine, in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (65 mg) in 69% yield.

Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically.

m.p. (cryst. from EtOAc): 212.4 - 213.1 °C.


¹**H NMR** (400 MHz, CD₃OD): δ /ppm = 1.65-1.82 (m, 10H), 2.18 (m, 1H), 2.29 (m, 2H), 3.08 (bs, 2H).

¹³C NMR (101 MHz, CD₃OD): δ/ppm = 35.8 (CH₂), 39.0 (CH), 43.2 (CH), 43.6 (CH), 44.6 (CH₂), 47.7 (2CH₂), 48.2 (2CH₂), 48.8 (C).

IR (neat): \tilde{v} /cm⁻¹ = 3535, 2947, 2916, 2488, 1653, 1616, 1506, 1464, 1388, 1304, 1252, 1099, 982, 931, 862, 789, 584.

HRMS: m/z = 152.1434 ([M]⁺; calculated for $C_{10}H_{18}N^+$ m/z = 152.1434).

2.2.2 Compound 6

To the solution of **5** (as free amine $R-NH_2$) (140 mg, 0.93 mmol) and *N*,*N*-dimethylamino pyridine (6 mg) in dichloromethane (2 mL) was added Boc-anhydride (218 mg, 1 mmol) and

the reaction mixture was stirred for 16 hours. The reaction was quenched with brine and the product was extracted using Et₂O. Combined organic fractions were concentrated *in vacuo* and the product was purified using column chromatography on silica-gel using hexane: Et₂O 2:1 as a mobile phase. The compound **6** was obtained as a colourless crystalline solid (150mg) in 60% yield.

m.p. (cryst. from pentane): 67.5 - 68.7 °C.


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.42 (s, 9H), 1.52-1.68 (m, 10H), 2.02 (m, 1H), 2. 19 (m, 2H), 3.21 (d, *J*= 8 Hz, 2H), 4.57 (bs, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 28.5 (3CH₃), 35.4 (CH₂), 37.5 (2CH), 41.4 (CH), 44.1 (CH₂), 47.0 (2CH₂), 47.8 (2CH₂), 49.5 (C), 80.0 (C), 156.5 (C).

IR (neat): \tilde{v} /cm⁻¹ = 3340, 2920, 2862, 1684, 1533, 1479, 1454, 1387, 1361, 1290, 1271, 1250, 1163, 1120, 1097, 1078, 1039, 1082, 982, 893, 866, 843, 781, 766, 658, 461, 434.

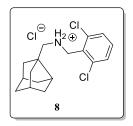
HRMS: m/z = 252.1961 ([M+H]⁺ calculated for $C_{15}H_{26}NO_2^+ m/z = 252.1958$).

2.2.3 Compound 7

Starting material **4aa** (207 mg, 1 mmol) was dissolved in dry 1,2,4-trichlorobenzene (4 mL) and (300 mg, 2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 140 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (76 mg, 2 mmol) was added on the top. Then dry THF (2 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and then Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (140 mg) in 70% yield.

Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically.

m.p. (cryst. from EtOAc): not measurable, sublimation of the sample occurred at 230 °C.


¹**H NMR** (400 MHz, CD₃OD): δ/ppm = 1.65-1.86 (m, 10H), 2.22 (m, 1H), 2.31 (m, 2H), 2.77 (s, 3H), 3.18 (bs, 2H).

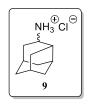
¹³C NMR (101 MHz, CD₃OD): δ/ppm = 35.0 (CH), 35.7 (CH₂), 38.9 (CH₃), 43.6 (CH), 44.5 (2CH₂), 47.7 (CH₂), 48.5 (C), 58.6 (2CH₂).

IR (neat): \tilde{v} /cm⁻¹ = 2918, 2862, 2846, 2762, 2438, 1591, 1468, 1460, 1431, 1398, 1338, 1302, 1154, 1134, 1117, 1101, 1024, 1016, 997, 941, 916, 862, 779, 671, 646, 523.

HRMS: m/z = 166.1589 ([M]⁺; calculated for $C_{11}H_{20}N^+$ m/z = 166.1591).

2.2.4 Compound 8

Starting material **4ab** (700 mg, 2 mmol) was dissolved in dry 1,2,4-trichlorobenzene (8 mL) and 600 mg (2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 16 hours at 150 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, solidified, and LiAlH₄ (152 mg, 4 mmol) was added on the surface. Then dry THF (4 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (596 mg) in 84% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically*. **m.p.** (cryst. from EtOAc): 197 - 198 °C.

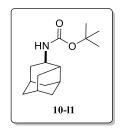

¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.50-1.73 (m, 10H), 1.96-1.99 (m, 1H), 2.19 (m, 2H), 2.65 (m, 2H), 4.13 (m, 2H), 7.10-7.14 (m, 1H), 7.28-7.30 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 35.5 (CH₂), 37.7 (2CH), 42.3 (CH), 44.0 (2CH₂), 47.5 (2CH₂), 49.2 (CH₂), 49.5 (C), 56.6 (CH₂), 128.5 (2CH), 128.8 (CH), 136.1 (2C), 136.3 (C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 2925, 2862, 2802, 1581, 1457, 1410, 1329, 1200, 1147, 1084, 910, 825, 770, 723, 615.

HRMS: m/z = 310.1122 ([M]⁺; calculated for $C_{17}H_{22}Cl_2N^+ m/z = 310.1124$).

2.2.5 Compound 9



Starting material **3b** (318 mg, 1.65 mmol) was dissolved in dry 1,2,4-trichlorobenzene (13 mL) and 495 mg (2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 120 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (125 mg, 3.3 mmol) was added on the surface. Then dry THF (2 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product **9** (1 to 1 mixture of diastereomers) was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (278 mg) in 90% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically. Following NMR spectra were recorded for the 1:1 mixture of diastereomers. The compound was transformed to Boc-protected derivative 10, which was separated into individual isomers.*

¹**H NMR** (400 MHz, CD₃OD): δ/ppm = 1.42-1.53 (m, 6H), 1.56-173 (m, 6H), 1.75-1.80 (m, 2H), 1.84-1.99 (m, 4H), 2.01-2.11 (m, 2H), 2.16-2.42 (m, 6H), 2.48-2.55 (m, 2H), 3.46-3.51 (m, 1H), 3.62-3.65 (m, 1H).

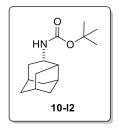
¹³C NMR (101 MHz, CD₃OD): δ/ppm = 28.4 (CH), 29.6 (CH), 32.1 (CH₂), 32.2 (CH₂), 32.5 (CH₂), 32.9 (CH₂), 33.6 (CH₂), 34.1 (CH₂), 36.1 (CH), 36.2 (CH), 36.3 (CH), 36.6 (CH), 38.1 (CH₂), 39.2 (CH), 39.3 (CH), 39.8 (CH₂), 40.3 (CH₂), 42.2 (CH₂), 49.5 (CH), 50.8 (CH).

2.2.6 Compound 10-l1

To the solution of free amine of **9** (151 mg, 1.0 mmol) and *N*,*N*-dimethylamino pyridine (6 mg) in dichloromethane (2 mL) was added Boc-anhydride (240 mg, 1.1 mmol) and the reaction mixture was stirred for 16 hours. The reaction was quenched with brine and the product was extracted using Et₂O. Combined organic fractions were concentrated *in vacuo* and the product was purified using column chromatography on silica-gel using hexane:Et₂O 2:1 as a mobile phase. The compound **10** was obtained as a colourless 1:1 mixture of two isomers **10-I1** and **10-I2** (105 mg) in 42% combined yield.

Isomer **10-I1** crystallises preferentially out of the hexane solution and was recrystallised in pentane.

m.p. (cryst. from pentane): 106.7 - 107.3 °C.


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.15-1.21 (m, 1H), 1.26-1.33 (m, 2H), 1.37-1.42 (m, 2H), 1.45 (m, 9H), 1.49-1.56 (m, 1H), 1.58-1.65 (m, 2H), 1.73-1.83 (m, 1H), 2.00-2.06 (m, 1H), 2.15-2.41 (m, 4H), 3.80-3.90 (m, 1H), 4.40-4.50 (m, 1H).

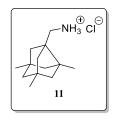
¹³C NMR (101 MHz, CDCl₃): δ/ppm = 28.6 (3CH₃), 28.8 (CH), 31.9 (CH₂), 32.5 (CH₂), 34.7 (CH), 35.5 (CH), 35.6 (CH₂), 39.8 (CH), 40.0 (CH₂), 41.6 (CH₂), 46.7 (CH), 77.4 (C), 152.1 (C) hardly visible.

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3338, 2978, 2916, 2866, 2846, 2486, 1674, 1520, 1456, 1410, 1365, 1350, 1308, 1252, 1165, 1090, 1039, 1016, 999, 960, 930, 895, 870,829, 804, 793, 762, 737, 619, 577, 461, 426.

HRMS: m/z = 274.1781 ([M+Na]⁺; calculated for C₁₅H₂₅NO₂Na⁺ m/z = 274.1778).

Compound 10-12

m.p. (cryst. from pentane): 106.7 - 107.3 °C.


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.30-1.40 (m, 4H), 1.46-1.56 (m, 4H), 1.60-1.68 (m, 3H), 1.75-1.83 (m, 4H), 1.94-2.03 (m, 2H), 2.12-2.24 (m, 3H), 2.36-2.47 (m, 2H), 3.86-3.92 (m, 1H), 4.66-4.75 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 27.7 (CH), 28.6 (3CH₃), 31.6 (CH₂), 32.2 (CH₂), 34.7 (CH), 35.2 (CH), 37.1 (CH₂), 39.5 (CH), 39.7 (CH₂), 42.6 (CH₂), 48.7 (CH), 79.1 (C), 155.1 (C) hardly visible.

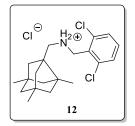
IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3456, 3259, 2924, 2866, 2844, 2251, 1693, 1525, 1495, 1473, 1452, 1363, 1352, 1302, 1248, 1163, 1063, 1028, 1014, 997, 978, 908, 872, 850, 818, 779, 729, 649, 586, 567, 461, 440.

HRMS: m/z = 274.1781 ([M+Na]⁺; calculated for $C_{15}H_{25}NO_2Na^+ m/z = 274.1778$).

2.2.7 Compound 11

Starting material **3c** (117 mg, 0.5 mmol) was dissolved in dry 1,2,4-trichlorobenzene (4 mL) and (150 mg, 2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 120 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (38 mg, 1.0 mmol) was added on the surface. Then dry THF (2 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (90 mg) in 78% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically*.

m.p. (cryst. from EtOAc): 285.4 - 286.3 °C.


¹**H NMR** (400 MHz, CD₃OD): δ/ppm = 1.03 (s, 6H), 1.05 (s, 3H), 1.38-1.47 (m, 10H), 2.96 (s, 2H).

¹³C NMR (101 MHz, CD₃OD): δ/ppm = 21.5 (CH₃), 24.9 (2CH₃), 40.9 (2C), 47.6 (CH₂), 48.9 (CH₂), 49.7 (C), 50.1 (C), 53.6 (2CH₂), 57.9 (2CH₂).

IR (neat): \tilde{v} /cm⁻¹ = 3010, 2943, 2918, 2891, 2662, 2850, 2713, 2609, 2038, 1618, 1604, 1502, 1454, 1390, 1371, 1348, 1286, 1234, 1215, 1149, 1117, 1080, 1022, 968, 708, 638, 579, 525.

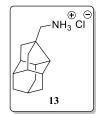
HRMS: m/z = 194.1902 ([M]⁺; calculated for $C_{13}H_{24}N^+$ m/z = 194.1904).

2.2.8 Compound 12

Starting material **4cb** (200 mg, 0.5 mmol) was dissolved in dry 1,2,4-trichlorobenzene (2 mL) and 150 mg (2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 16 hours at 150 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (38 mg,1 mmol) was added on the surface. Then dry THF (2 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product,

resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product **12** was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (120 mg) in 62% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically.*

m.p. (cryst. from EtOAc): 285.4 - 286.3 °C.


¹**H NMR** (400 MHz, CD₃Cl₃): δ/ppm = 0.84 (s, 3H), 0.92 (s, 6H), 1.22-1.42 (m, 8H), 1.75-1.78 (m, 2H), 2.81 (br s, 2H), 4.64 (m, 2H), 7.31-7.35 (m, 1H), 7.4-7.42 (m, 2H), 9.19 (br s, 2H).

¹³C NMR (101 MHz, CD₃Cl₃): δ/ppm = 21.3 (CH₃), 24.5 (2CH₃), 40.2 (C), 46.5 (2CH₂), 47.7 (2CH₂), 48.8 (2C), 48.9 (C), 52.7 (2CH₂), 56.8 (CH₂), 127.2 (2C), 129.1 (2CH), 131.9 (CH), 137.4 (C).

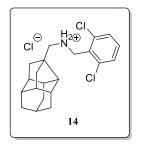
IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3379, 3298, 3226, 3098, 2951, 2937, 2924, 2902, 2864, 2837, 2733, 2584, 1620, 1577, 1562, 1452, 1439, 1408, 1371, 1209, 1169, 1093, 1030, 1005, 968, 949, 922, 789, 764, 719, 661, 634, 546.

HRMS: m/z = 352.1593 ([M]⁺; calculated for $C_{20}H_{28}Cl_2N^+$ m/z = 352.1594).

2.2.9 Compound 13

Starting material **3d** (120 mg, 0.5 mmol) was dissolved in dry 1,2,4-trichlorobenzene (4 mL) and (150 mg, 2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 120 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, solidified, and LiAlH₄ (38 mg, 1.0 mmol) was added on the surface. Then dry THF (2 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under vacuo. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product **13** was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (80 mg) in 67% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically*.

m.p. (cryst. from EtOAc): 182.8 - 183.7 °C


¹**H NMR** (400 MHz, CD₃OD): δ/ppm = 1.61-1.69 (m, 4H), 1.76 (m, 2H), 1.83-1.87 (m, 4H), 1.93-1.96 (m, 5H), 2.03 (m, 2H), 3.04 (m, 2H).

¹³C NMR (101 MHz, CD₃OD): δ/ppm = 26.1 (CH), 34.3 (2CH₂), 35.6 (CH₂), 36.4 (2CH), 43.0 (2CH), 46.1 (CH₂), 46.8 (2CH), 48.0 (2CH₂), 50.5 (C).

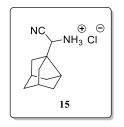
IR (neat): \tilde{v} /cm⁻¹ = 3159, 3120, 2908, 2848, 1610, 1504, 1441, 1248, 1225, 1200, 1169,1024, 982, 849, 762, 633, 580, 517.

HRMS: m/z = 204.1747 ([M]⁺; calculated for $C_{14}H_{22}N^+$ m/z = 204.1747).

2.2.10 Compound 14

Starting material **4db** (100 mg, 0.25 mmol) was dissolved in dry 1,2,4-trichlorobenzene (1 mL) and (75 mg, 2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 16 hours at 150 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and LiAlH₄ (19 mg, 0.5 mmol) was added on the surface. Then dry THF (1 mL) was added at -78 °C and the reaction was let to warm up to r.t. and stirred at r.t. for 3h. The reaction was quenched with sat. solution of Na₂CO₃, product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O with THF was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the resulting hydrochloric salt was filtered off. The product **14** was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (45 mg) in 45% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically*.

m.p. (cryst. from EtOAc): 182.8 - 183.7 °C


¹**H NMR** (400 MHz, CD₃Cl₃): δ/ppm = 1.63-1.96 (m, 19H), 2.94 (m, 2H), 4.65 (m, 2H), 7.30-7.34 (m, 1H), 7.40-7.42 (m, 2H).

¹³C NMR (101 MHz, CD₃Cl₃): δ/ppm = 24.6 (CH), 33.3 (CH₂), 34.6 (2CH₂), 34.9 (CH), 41.5 (CH), 45.5 (2CH), 45.8 (CH₂), 46.3 (2CH₂), 46.5 (2CH), 49.1 (C), 53.3 (CH₂), 127.3 (2C), 129.1 (2CH), 131.8 (CH), 137.4 (C).

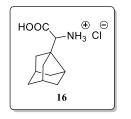
IR (neat): \tilde{v} /cm⁻¹ = 3390, 3062, 2902, 2844, 2642, 2559, 2515, 2387, 1579, 1562, 1452, 1435, 1338, 1302, 1209, 1173, 1092, 1028, 1012, 962, 843, 789, 762, 731, 619, 544.

HRMS: m/z = 362.1438 ([M]⁺; calculated for $C_{21}H_{26}Cl_2N^+$ m/z = 362.1437).

2.2.11 Compound 15

Starting material **3a** (100 mg, 0.5 mmol) was dissolved in dry 1,2,4-trichlorobenzene (8 mL) and 150 mg (2 equiv.) of freshly distilled anhydrous triflic acid was added to the solution at r.t. The reaction mixture was heated for 4 hours at 120 °C under inert atmosphere. Then the reaction mixture was cooled to -78 °C, it solidified, and TMSCN (250 μ L, 2 mmol), DMF (0.2 mL) and Et₃N (0.2 mL) were added to the reaction mixture. The reaction mixture was let to warm up to r.t. and stirred at r.t. for 16h. The reaction was quenched with sat. solution of Na₂CO₃, the product, resulting amine, was extracted with Et₂O. Combined organic fractions were dried over MgSO₄ and Et₂O was evaporated under *vacuo*. To the solution of amine in 1,2,4-trichlorobenzene was added HCl in Et₂O and the solvent from the resulting hydrochloric salt solution was evaporated under *vacuo* at elevated temperature. The product **15** was purified by crystallisation from EtOAc and obtained as colourless crystalline solid (82 mg) in 77% yield. *Please, note that if triflic acid is not anhydrous or the solvent is contaminated with water then the yield drops dramatically*.

m.p. (cryst. from EtOAc): 212.3 - 213.1 °C.


¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.61-1.85 (m, 13H), 2.26 (m, 1H), 2.31 (m, 2H), 3.72 (s, 1H).

¹³C NMR (101 MHz, CDCl₃): δ/ppm = 35.2 (2CH₂), 37.5 (CH), 41.6 (CH), 43.8 (CH₂), 44.9 (CH₂), 46.0 (2CH₂), 50.5 (CH), 52.5 (C), 121.7 (C).

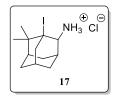
IR (neat): \tilde{v} /cm⁻¹ = 3386, 3321, 3195, 3195, 2935, 2866, 2669, 2580, 2225, 1716, 1660, 1481, 1458, 1369, 1336, 1306, 1242, 1215, 1130, 1093, 1078, 1063, 962, 947, 908, 862, 843, 781, 708, 638, 588, 523, 420.

HRMS: m/z = 177.1389 ([M]⁺ calculated for $C_{11}H_{17}N_2^+$ m/z = 177.1386).

2.2.12 Compound 16

Starting material **15** (80 mg, 0.38 mmol) was dissolved in concentrated hydrochloric acid (2 mL) and stirred at 100 °C for 36 hours. Then the solution was neutralised using sodium hydroxide and the water was evaporated under *vacuo*. Then the compound was extracted with methanol and converted using HCl/Et₂O to hydrochloric salt. The compound **16** was obtained as colourless solid (71 mg) in 79% yield.

m.p. (cryst. from MeOH): 293.5 - 294.3 °C


¹**H NMR** (400 MHz, CD₃OD): δ/ppm = 1.57-1.88 (m, 10H), 2.27 (m, 2H), 2.58-2.61 (m, 1H), 4.05 (s, 1H).

¹³C NMR (101 MHz, CD₃OD): δ/ppm = 35.7 (CH₂), 38.3 (CH), 38.7 (CH), 43.2 (CH), 44.3 (CH₂), 44.4 (CH₂), 46.3 (CH₂), 46.7 (CH₂), 50.9 (C), 60.2 (CH), 170.0 (C).

IR (neat): \tilde{v} /cm⁻¹ = 3465, 3311 3167, 2914, 2866, 2848, 2667, 2542, 2359, 2189, 1712, 1595, 1576,1520, 1458, 1402, 1336, 1100, 1269, 1250, 1178, 1165, 1092, 1030, 985, 955, 837, 779, 640, 563, 532, 513.

HRMS: m/z = 196.1331 ([M]⁺; calculated for $C_{11}H_{18}NO_2^+ m/z = 196.1333$).

2.2.13 Compound 17

Starting material **3e** (663 mg, 3 mmol) was dissolved in anhydrous dichloromethane (3 mL) in sealed tube and 2 equiv. of KI (6 mmol, 996 mg) were added to the solution. To the resulting suspension TfOH (1050 mg, 0.617 mL, 4 equiv.) was added and the tube was quickly closed. The reaction mixture was heated to 40 °C and stirred at this temperature for 16 hours. Then the reaction mixture was cooled to 0 °C and poured in cold sodium carbonate water solution and Et₂O. The compound was extracted as a free base with cold Et₂O, dried over MgSO₄ and transformed into hydrochloric salt using cold HCl in Et₂O and filtered off as product **17** (450 mg, 44% yield). *Please note that all transformations with free amine of 17 must be performed at low temperatures.*

m.p. (cryst. from EtOAc): 207.5 – 208.9 °C

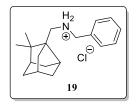

¹**H NMR** (400 MHz, CD₃OD): δ /ppm = 1.30 (s, 3H), 1.39 (s, 3H), 1.68-1.94 (m, 6H), 2.25-2.34 (m, 3H), 2.73-2.78 (m, 1H), 2.92-2.98 (m, 1H), 4.21-4.22 (m, 1H).

¹³C NMR (101 MHz, CD₃OD): δ/ppm = 28.8 (CH₃), 29.4 (CH₃), 30.8 (CH₂), 32.9 (CH₂), 33.2 (CH₂), 33.9 (CH), 36.1 (CH), 40.1 (CH), 42.4 (CH₂), 45.9 (C), 60.8 (CH), 66.7 (C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3178, 3057, 2989, 2910, 2864, 2725, 2629, 2559, 1948, 1587, 1522, 1485, 1466, 1367, 1315, 1232, 1130, 1030, 1001, 985, 945, 922, 870, 822, 802, 727, 669, 602, 526, 492, 420.

HRMS: m/z = 306.0714 ([M]⁺; calculated for $C_{12}H_{21}IN^+ m/z = 306.0714$).

2.2.14 Compound 18


Starting material **17** (156 mg, 0.5 mmol) was placed in 1,4-dioxane (2 mL) and K_2CO_3 (5 equiv.) was added, followed by 4 mL of water. The reaction was heated for 80 °C for 1h and then the product was extracted with diethylether. Diethylether phase was washed with HCl/water solution to remove the side product, then it was washed with water and then the organic fraction was dried over MgSO₄. The product **18** was concentrated *in vacuo* and obtained as colourless non-crystalline solid (53 mg) in 60% yield.

¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.03 (s, 3H), 1.18 (s, 3H), 1.40-1.50 (m, 3H), 1.65 (m, 3H), 1.87-1.91 (m, 1H), 2.14-2.25 (m, 3H), 2.73-2.76 (m, 1H), 9.83 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ /ppm = 22.7 (CH₃), 27.2 (CH₃), 32.0 (CH₂), 36.1 (CH), 36.9 (CH₂), 40.2 (CH₂), 44.4 (CH₂), 47.5 (C), 47.7 (CH), 65.3 (CH), 77.4 (C), 205.88 (CH).

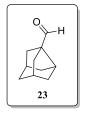
Analytical data of compound **18** are in agreement with the reported in publication Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.2.15 Compound 19

Starting material **18** (40 mg, 0.22 mmol) was mixed with benzylamine (25 mg, 0.22 mmol, 1 equiv.) and stirred in anhydrous dichloromethane (1 mL) with anhydrous MgSO₄ (120 mg) at r.t. for 24 hours. Then the solution was filtered concentrated *in vacuo*, dissolved in THF 1 mL

and dropwise added to LiAlH₄ suspension and stirred at r.t. for additional 3 hours. Then the reaction was quenched with water and the product was extracted using Et₂O. Combined organic fractions were dried over MgSO₄ and the product was concentrated *in vacuo*. Then followed the addition of HCl in Et₂O and the product as hydrochloric salt was filtered off. Compound x was obtained as colourless solid (55 mg) in 82% yield.

m.p. (cryst. from EtOAc): sublimation of the sample at 200 °C

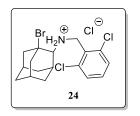

¹**H NMR** (400 MHz, CD₃Cl₃): δ/ppm = 0.71 (s, 3H), 1.03 (s, 3H), 1.25-1.31 (m, 1H), 1.37-1.40 (m, 1H), 1.53-1.68 (m, 5H), 1.81-1.85 (m, 1H), 2.00-2.12 (m, 3H), 2.20 (m, 1H), 2.31-2.34 (m, 1H), 2.70-2.85 (m, 2H), 7.37-7.44 (m, 3H), 7.69-7.71 (m, 2H), 9.31 (bs, 2H)

¹³C NMR (101 MHz, CD₃Cl₃): δ /ppm = 22.0 (CH₃), 26.7 (CH₃), 32.0 (CH₂), 36.9 (CH), 38.7 (CH₂), 40.2 (CH₂), 42.8 (CH), 44.8 (CH₂), 46.6 (C), 47.5 (CH), 48.9 (CH₂), 51.4 (C), 51.8 (CH₂), 129.4 (CH), 129.5 (CH), 130.6 (CH), 130.7 (C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3338, 3037, 2918, 2856, 2777, 2655, 2453, 1655, 1460, 1441, 1419, 1369, 1277, 1211, 1117, 1103, 1080, 1016, 976, 941, 930, 800, 748, 696, 584, 505, 482, 418.

HRMS: m/z = 270.2221 ([M]⁺; calculated for C₁₉H₂₈N⁺ m/z = 270.2216).

2.2.16 Compound 23


Starting material 1-iodo-2-amino adamantane hydrochloride (100 mg, 0.32 mmol) was placed in 1,4-dioxane 2 mL and K_2CO_3 (250 mg, 5 equiv.) was added, followed by 4 mL of water. The reaction was heated for 80 °C for 1h and then the product was extracted with diethylether. Diethylether phase was washed with HCl/water solution to remove the side product, then it was washed with water and then the organic fraction was dried over MgSO₄. The product **23** was concentrated *in vacuo* and obtained as colourless noncrystalline solid (20 mg) in 42% yield. *Please, note, compound* **23** *is volatile.*

¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.61-1.76 (m, 8H), 2.01-2.04 (m, 2H), 2.36 (m, 2H), 2.57-2.6 (m, 1H), 9,73 (s, 1H).

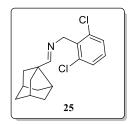
¹³C NMR (101 MHz, CDCl₃): δ/ppm = 35.4 (2CH₂), 37.5 (2CH), 42.1 (CH), 43.7 (2CH₂), 43.7 (2CH₂), 60.4 (C), 205.4 (COH).

Analytical data for compound **23** are in agreement with the reported in publication Zonker, B.; Becker, J.; Hrdina, R. *Org. Biomol. Chem.* **2021**, *19*, 4027-4031.

2.2.17 Compound 24

Starting material **4ab** (175 mg, 0.5 mmol) was dissolved in anhydrous 1,2,4-trichlorobenzene (2 mL) in sealed tube and 3 equiv. of KBr (1.5 mmol, 178 mg) were added to the solution. Then the suspension was cooled down and solidified, then TfOH (300 mg, 176 μ L, 4 equiv.) was added and the tube was closed before the HBr gas started to evolve. The reaction mixture was heated to 150 °C and stirred at this temperature for 16 hours. Then the reaction mixture was cooled to 0 °C and poured in cold sodium carbonate water solution and Et₂O. The compound was extracted as a free base with cold Et₂O, dried over MgSO₄ and concentrated at low r.t. Followed short pad chromatography on silica gel using hexane: EtOAc (4:1) as a mobile phase. The compound was concentrated *in vacuo* at r.t. and using HCl in ether transformed into hydrochloric salt and filtered off as product **24** (188 mg) in 88% yield.

m.p. (cryst. from EtOAc): 184.6 - 185.1 °C


¹**H** NMR (400 MHz, CDCl₃): δ/ppm = 1.66-1.80 (m, 5H), 1.98-2.25 (m, 5H), 2.46-2.49 (m, 1H), 2.74-2.88 (m, 2H), 3.04 (m, 2H), 4.56 (m, 1H), 4.91 (m, 1H,), 7.35-7.39 (m, 1H),7.43-7.45 (m, 2H).

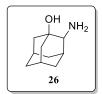
¹³C NMR (101 MHz, CDCl₃): δ /ppm = 29.3 (CH₂), 31.7 (CH), 31.9 (CH), 32.4 (CH), 35.3 (CH₂), 36.2 (CH₂), 42.9 (CH₂), 44.8 (CH₂), 49.6 (C), 67.3 (CH), 129.3 (CH), 137.1 (2CH), 129.3 (2C), 137.1 (1C).

IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3323, 3163, 2912, 2852, 2627, 2312, 1711,1579, 1562, 1464, 1435, 1342, 1194, 1146, 1119, 1093, 1032, 1022, 987, 939, 841, 825, 769, 721, 687, 638, 613, 509, 484, 428.

HRMS: m/z = 388.0227 ([M]⁺; calculated for $C_{17}H_{21}BrCl_2N^+ m/z = 388.0229$).

2.2.18 Compound 25

Starting material, free amine, **24** (88 mg, 0.23 mmol) was dissolved in anhydrous THF (2 mL) and 1.6 M (MeLi in THF) 142 μ L was added dropwise to the solution at -78 °C. The reaction mixture was allowed to reach r.t., stirred for additional 20 minutes and then concentrated *in vacuo*. The compound was characterised without further purification.


¹**H NMR** (400 MHz, THF-*d*₈): δ/ppm = 1.57-1.62 (m, 6H), 1.75-1.78 (m, 2H), 1.92-1.94 (m, 2H), 2.21 (m, 2H), 2.34-2.37 (m, 1H), 4.81-4.82 (m, 2H), 7.21-7.25 (m, 1H), 7.34-7.36 (m, 2H), 7.85 (m, 1H).

¹³C NMR (101 MHz, THF-*d*₈): δ/ppm = 35.3 (CH₂), 37.6 (2CH), 42.9 (CH), 43.6 (2CH₂), 46.3 (2CH₂), 54.4 (C), 59.1 (CH₂), 128.3 (2CH), 129.2 (CH), 135.4 (2C), 136.9 (C), 170.4 (CH).

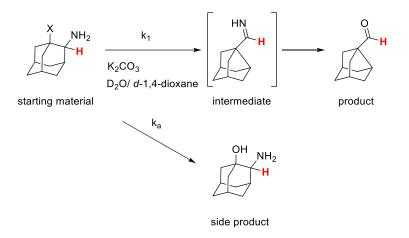
IR (neat): $\tilde{\nu}$ /cm⁻¹ = 3431, 2924, 2864, 1653, 1562, 1437,1369, 1304, 1242, 1084, 1020, 773, 7646 746, 687, 656, 580, 525, 492, 434.

HRMS: m/z = 308.0965 ([M+H]⁺; calculated for $C_{17}H_{20}Cl_2N^+$ m/z = 308.0968).

2.2.19 Compound 26

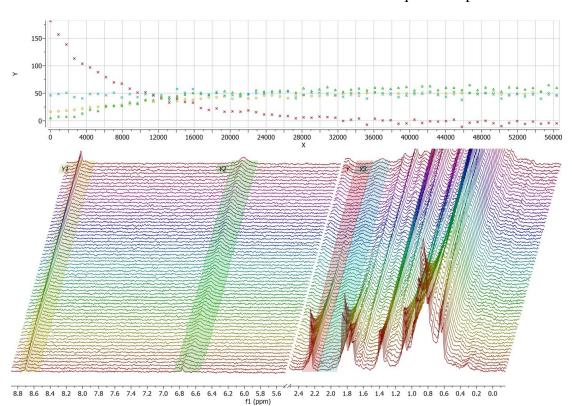
Starting material **3a** 0.8 g was dissolved in 30 mL of 5M KOH/water solution and stirred at 100 °C for 24 hours. Then the reaction mixture was cooled to r.t. and the product **26** was extracted with chloroform (3 times 50 mL). Combined organic phases were dried over MgSO₄ and the solvent was evaporated *in vacuo*. Product **26** was obtained as colourless solid (0.6 g) in 87% yield.

¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 1.41-1.48 (m, 2H), 2.27 (m, 2H), 1.56-1.68 (m, 4H), 1.70-1.86 (m, 5H), 1.94 (m, 1H), 2.04 (m, 1H), 2.12 (m, 1H), 2.76 (bs, 1H).


¹³C NMR (101 MHz, CD₃OD): δ/ppm = 29.6 (CH), 30.1 (CH₂), 30.8 (CH), 36.6 (CH₂), 37.2 (CH), 37.4 (CH₂), 39.0 (CH₂), 44.3 (CH₂), 60.4 (CH), 69.1 (C).

For the first synthesis of 26 see: Curran, W. V.; Angier, R. B.; Chem. Comm. 1967, 563.

3. Kinetic studies


Preacquisition delayed experiments were measured with Varian Inova 400 MHz instrument equipped with an ASW4NUC probe. Experiments were carried out at various temperatures (25, 40, 50, 60, 70, 80 °C) and accurate values (25.2, 40.6, 51.7, 61.7, 72.7, 83.6 with ± 0.30 °C error)¹were obtained by temperature calibrating experiments with 80% glycol in DMSO-d6. Low quality of spectra was caused by many factors and technical limitations of the spectrometer. Experiments were carried out in a mixture of two deuterated solvents (dioxaned8 1:4 D₂O), with highly diluted reactant and high ionic strength due to presence of inorganic salts (KCl, K₂CO₃). These conditions correspond to experimental conditions used during synthesis. Shimming was done in the presence of similar NMR tube with the same solvent ionic strength therefore the homogeneity of the magnetic field could not be ideal. Standard shimming procedure could not be used because of its time demands and the fast kinetics of the measured reaction at higher temperatures. All data were processed with MestRenova 12.0.3 and integral values were obtained by stacked spectra automatization. Combination of lower signal to noise ratio and processing automatization burdened integral with some error. Data were processed in term of time (experiments in the NMR spectrometer were started after some delay), values of integrals (to avoid negative concentration because of "integral values of noise") and values of integrals were substituted and normalized by starting concentration. Chemical shifts change their values with temperature and pH of the solution. Labels are with the same chemical shifts across all tables for simplification. Usual chemical shifts from highest to lowest: product (8.9 ppm), intermediate product (7.0 ppm), starting material (2.25 ppm), side product (2.0 ppm) (marked red in Scheme 1).

Scheme 1 Simplified model for kinetic studies

¹ http://chem.ch.huji.ac.il/nmr/software/thermometer.html

KIN-25-Iodo

Derivative: X=Iodo Concentration: 53 mM

Base: 5 eqiv. Temperature: 25 °C

Fig. 1 Mestrenova - Iodo 25 °C

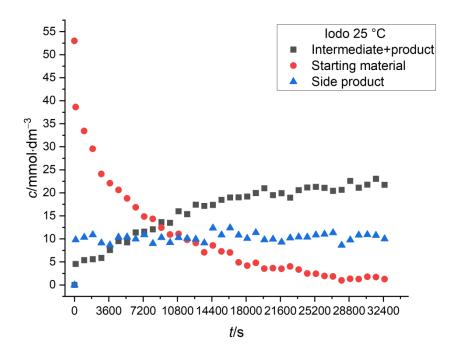


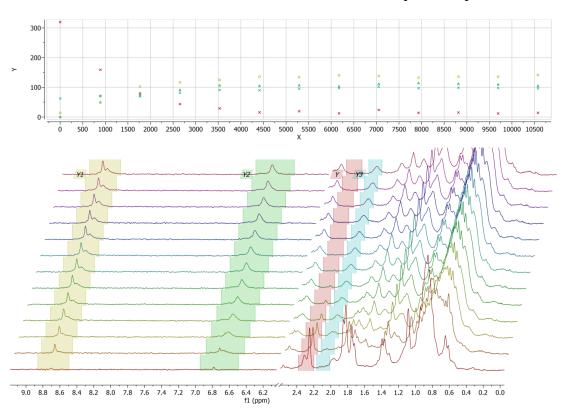
Fig. 2 Processed graph – Iodo 25 $^{\circ}C$

Table 1 Raw data – integral values – Iodo 25 °C

			25 °C		
		8	رە بە	(mc	Ê
	(u	intermediate product (7.00 ppm)	product + intermediate product	55 57	side product (1.99 ppm)
S	product (8.92 ppm)	onpo	rme	(2.2	1.99
Time/s	(8.9	ite pro ppm)	t + intern product	erial	ct (;
Ħ	luct	diat	pr +	nat	npo.
	proc	rme	npo	ing	le pr
		inte	pr	starting material (2.25 ppm)	sic
0	16.3	5.0	21.3	181.1	46.0
900	17.2	8.0	25.2	156.6	48.6
1800	18.4	7.8	26.2	138.5	51.0
2700 3600	19.9 22.0	7.5 13.6	27.5 35.5	112.9 103.4	42.8 40.6
4500	22.0	20.2	44.6	96.7	40.0
5400	25.3	17.9	43.2	88.1	48.8
6300	27.2	26.2	53.4	79.1	46.8
7200	26.3	27.9	54.2	69.6	51.0
8100	29.2	27.4	56.6	67.2	42.2
9000	30.3	33.6	63.9	58.3	48.1
9900 10800	32.3 36.7	30.8 38.2	63.2 74.9	51.3 51.9	43.0 48.2
11700	34.5	37.5	74.5	45.8	47.4
12600	40.7	40.9	81.6	42.7	46.5
13500	41.2	39.2	80.4	33.2	42.7
14400	36.4	45.0	81.4	40.2	57.9
15300	38.9	47.7	86.6	34.2	51.0
16200 17100	38.3 40.0	50.6 49.1	88.9 89.1	32.9 23.0	58.0 50.8
18000	40.0	49.1	89.9	19.7	47.4
18900	42.6	50.9	93.5	22.4	53.3
19800	44.5	53.8	98.3	16.6	46.0
20700	39.8	51.5	91.3	17.1	46.5
21600	44.2	49.1	93.4	16.4	43.6
22500 23400	40.4 41.2	48.4 55.2	88.8 96.4	18.8 15.6	47.9 48.8
24300	41.2	53.2	99.2	13.0	48.8
25200	46.0	53.8	99.8	11.3	50.9
26100	44.2	54.6	98.8	9.1	51.7
27000	41.2	54.5	95.7	8.6	53.1
27900	45.6	51.2	96.7	4.6	40.4
28800	46.8	59.1	105.8	6.2	45.7
29700 30600	44.9 45.0	54.0 57.0	98.9 102.0	5.9 8.3	50.8 51.3
31500	45.0	61.1	102.0	8.5 7.9	51.5
31300	-+0.5	01.1	100.0	1.5	50.+

32400	45.7	56.2	101.9	6.0	46.9
33300	49.0	52.6	101.6	1.1	43.5
34200	46.7	56.8	103.6	2.8	51.0
35100	45.3	58.7	104.0	4.8	50.9
36000	50.4	55.3	105.7	-5.9	40.8
36900	50.9	60.4	111.3	2.2	52.5
37800	47.7	59.0	106.7	2.8	50.6
38700	47.4	58.0	105.4	4.2	49.7
39600	49.3	60.0	109.4	-2.3	43.1
40500	49.5	61.4	111.0	-1.3	45.6
41400	48.2	55.4	103.6	1.5	50.4
42300	51.2	62.7	113.9	-1.8	49.3
43200	51.1	63.1	114.2	0.9	53.3
44100	49.4	55.9	105.4	0.9	47.1
45000	49.6	60.3	109.8	0.0	43.6
45900	48.1	60.0	108.1	3.5	52.9
46800	49.9	55.9	105.8	-7.6	38.0
47700	50.6	65.1	115.7	0.6	48.4
48600	49.5	55.8	105.3	-0.2	47.5
49500	50.7	60.5	111.2	2.3	48.7
50400	51.9	57.3	109.1	-2.4	47.1
51300	47.8	53.2	101.0	-5.6	38.9
52200	45.6	60.8	106.4	0.6	46.3
53100	49.5	60.0	109.4	3.4	47.3
54000	48.3	57.1	105.4	-5.3	44.2
54900	51.5	59.7	111.1	-1.5	48.6
55800	52.9	53.2	106.1	-5.5	40.5
56700	47.6	65.0	112.6	-4.4	50.2
57600	45.3	60.0	105.4	-3.3	47.1

	Processed c	lata - concentra		tion	
			25 °C		
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM
120	3.5	1.1	4.6	38.6	9.8
1020	3.7	1.7	5.4	33.4	10.4
1920	3.9	1.7	5.6	29.6	10.9
2820	4.2	1.6	5.9	24.1	9.1
3720	4.7	2.9	7.6	22.1	8.7
4620	5.2	4.3	9.5	20.6	10.4
5520	5.4	3.8	9.2	18.8	10.4
6420	5.8	5.6	11.4	16.9	10.0
7320	5.6	5.9	11.6	14.9	10.9
8220	6.2	5.8	12.1	14.3	9.0
9120	6.5	7.2	13.6	12.4	10.3
10020	6.9	6.6	13.5	10.9	9.2
10920	7.8	8.1	16.0	11.1	10.3
11820	7.4	8.0	15.4	9.8	10.1
12720	8.7	8.7	17.4	9.1	9.9
13620	8.8	8.4	17.1	7.1	9.1
14520	7.8	9.6	17.4	8.6	12.3
15420	8.3	10.2	18.5	7.3	10.9
16320	8.2	10.8	19.0	7.0	12.4
17220	8.5	10.5	19.0	4.9	10.8
18120	9.1	10.1	19.2	4.2	10.1
19020	9.1	10.9	19.9	4.8	11.4
19920	9.5	11.5	21.0	3.5	9.8
20820	8.5	11.0	19.5	3.6	9.9
21720	9.4	10.5	19.9	3.5	9.3
22620	8.6	10.3	18.9	4.0	10.2
23520	8.8	11.8	20.6	3.3	10.4
24420	9.8	11.3	21.2	2.5	10.4
25320	9.8	11.5	21.3	2.4	10.9
26220 27120	9.4 8.8	11.6 11.6	21.1 20.4	1.9	11.0 11.3
27120 28020	8.8 9.7	11.6	20.4 20.6	1.8 1.0	8.6
28020	9.7	10.9	20.6	1.0	8.6 9.8
28920	9.6	12.6	22.0	1.3	9.8 10.8
30720	9.6	11.5	21.1	1.3	10.8
31620	10.0	12.2	23.0	1.8	10.5
51020	10.0	10.0	25.0	1./	10.7


Table 2 Processed data – Iodo 25 $^{\circ}C$

Processed data - concentration normalization

32520	9.7	12.0	21.7	1.3	10.0
0	0.0	0.0	0.0	53.0	0.0

* Correction: + 2 minutes, slope + 0.0

KIN-40-Iodo

Derivative: X= Iodo Concentration: 53 mM

Base: 5 eqiv. Temperature: 40 °C

Fig. 3 Mestrenova - Iodo 40 °C

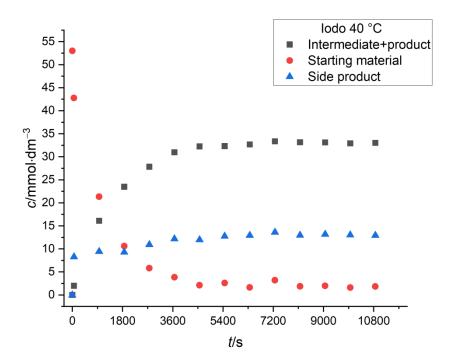


Fig. 4 Processed graph – Iodo 40 $^\circ C$

Table 3 Raw data – integral values – Iodo 40 $^\circ C$

			40 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	13.9	0.9	14.8	319.4	61.8
900	70.4	49.8	120.2	159.4	70.5
1800	102.3	73.2	175.4	79.3	69.4
2700	116.8	91.2	207.9	43.5	81.7
3600	124.7	106.7	231.4	28.7	91.1
4500	135.7	105.3	241.0	15.8	89.6
5400	134.0	107.4	241.4	19.3	95.4
6300	140.6	103.5	244.1	12.3	96.6
7200	137.6	111.6	249.2	24.0	101.8
8100	132.5	115.1	247.7	13.9	96.9
9000	135.4	112.0	247.4	14.8	98.3
9900	135.8	110.1	245.9	11.8	97.3
10800	141.1	105.6	246.7	13.8	96.5

Processed data - concentration normalization						
	40 °C					
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM	
60	1.9	0.1	2.0	42.8	8.3	
960	9.4	6.7	16.1	21.3	9.4	
1860	13.7	9.8	23.5	10.6	9.3	
2760	15.6	12.2	27.8	5.8	10.9	
3660	16.7	14.3	31.0	3.8	12.2	
4560	18.2	14.1	32.3	2.1	12.0	
5460	17.9	14.4	32.3	2.6	12.8	
6360	18.8	13.9	32.7	1.6	12.9	
7260	18.4	14.9	33.4	3.2	13.6	
8160	17.7	15.4	33.1	1.9	13.0	
9060	18.1	15.0	33.1	2.0	13.2	
9960	18.2	14.7	32.9	1.6	13.0	
10860	18.9	14.1	33.0	1.9	12.9	
0	0.0	0.0	0.0	53.0	0.0	

Table 4 Processed data – Iodo 40 $^\circ C$

Processed data - concentration normalization

* Correction: + 1 minute, slope + 0.0

KIN-50-Iodo

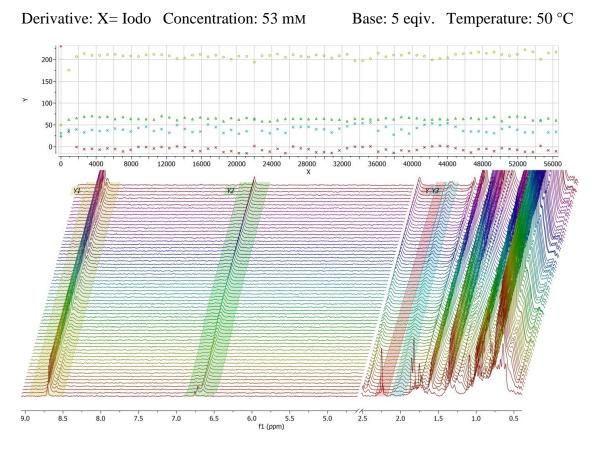
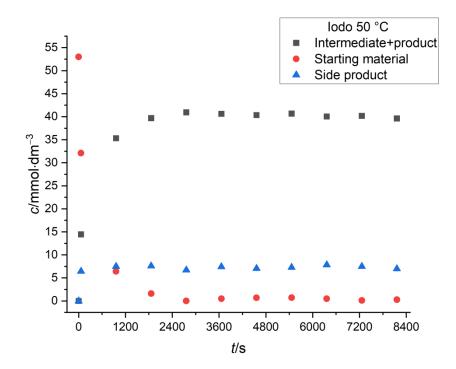



Fig. 5 Mestrenova - Iodo 50 °C

Fig. 6 Processed graph – Iodo 50 °C

Table 5 Raw data – integral values – Iodo 50 °C

			50 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	49.3	24.5	73.7	232.7	30.8
900 1800	175.5 206.4	62.6 66.0	238.0 272.4	30.4 -7.4	38.9 39.7
2700	213.4	68.9	282.3	-20.0	32.9
3600	209.3	70.5	279.7	-16.1	38.6
4500	209.5	68.2	277.7	-14.5	35.6
5400	211.3	68.8	280.1	-14.2	37.4
6300	211.5	63.7	275.2	-16.2	41.5
7200	208.3	68.0	276.3	-19.1	39.1
8100 9000	207.8 206.4	64.0 63.7	271.8 270.1	-17.7 -8.5	34.9 42.9
9000	200.4	63.3	270.1	-8.5	42.9
10800	210.7	62.6	274.3	-22.0	36.0
11700	210.8	70.4	281.2	-10.0	40.3
12600	208.2	67.5	275.7	-18.6	31.8
13500	201.7	60.9	262.6	-11.4	49.7
14400	203.4	67.2	270.5	-13.6	40.6
15300 16200	210.3 211.6	63.4 67.6	273.7 279.2	-13.3 -17.2	33.3 34.5
17100	205.9	64.7	279.2	-17.2	50.7
18000	209.9	65.3	275.2	-8.9	44.7
18900	205.3	58.2	263.6	-21.0	31.5
19800	200.9	66.1	267.0	-15.9	38.6
20700	207.5	62.0	269.5	-22.2	29.8
21600	206.8	66.2	273.0	-17.5	35.3
22500 23400	194.0 208.8	64.4 58.6	258.4 267.3	-3.9 -21.6	62.3 36.7
23400	208.8	58.0	267.3	-21.6	30.7
25200	212.3	60.8	273.2	-11.7	40.2
26100	204.9	64.1	269.0	-23.5	31.5
27000	211.0	64.4	275.4	-5.6	44.7
27900	207.2	64.3	271.5	-4.4	45.6
28800	205.6	63.2	268.7	-8.8	45.5
29700	210.4	64.5	274.9	-13.3	39.8
30600 31500	208.8 203.3	64.3 62.4	273.1 265.7	-13.6 -16.7	40.0 32.7
31300	203.5	02.4	205.7	-10.7	52.7

32400	208.3	62.1	270.4	-10.7	41.4
33300	211.7	58.4	270.1	-4.7	46.7
34200	196.9	64.3	261.3	-2.0	53.0
35100	197.1	64.3	261.3	-1.7	53.7
36000	201.7	62.7	264.5	-1.6	55.6
36900	214.3	62.6	276.9	-13.6	36.7
37800	206.1	65.7	271.9	-7.7	45.7
38700	210.2	63.0	273.2	-16.3	27.4
39600	209.7	68.2	277.8	-7.0	39.6
40500	214.5	66.5	281.0	-11.0	30.1
41400	209.8	65.6	275.4	-6.1	42.7
42300	207.4	62.0	269.4	0.9	50.4
43200	199.3	62.5	261.8	6.7	53.5
44100	202.2	63.7	265.9	6.4	49.2
45000	203.9	62.5	266.4	4.6	53.9
45900	212.1	65.0	277.1	-1.5	45.8
46800	213.0	63.9	276.9	-6.8	36.1
47700	214.7	66.0	280.8	-11.7	34.5
48600	217.0	63.6	280.6	-3.6	35.4
49500	214.3	65.2	279.5	-7.8	33.2
50400	217.1	68.1	285.1	-12.0	31.0
51300	211.5	59.2	270.7	-2.1	40.7
52200	209.0	68.4	277.4	-0.4	45.5
53100	211.5	69.8	281.3	-4.5	38.7
54000	222.2	67.9	290.2	-10.0	32.9
54900	217.6	60.4	278.0	-11.2	33.0
55800	200.5	61.3	261.8	8.5	59.3
56700	215.1	65.2	280.4	-6.0	32.8
57600	217.0	60.4	277.5	-9.2	33.9

Processed data - concentration normalization						
	50 °C					
Time/s	product (8.92 ppm)/mM	product (8.92 ppm)/mM intermediate product (7.00 ppm)/mM		starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM	
60	8.8	5.6	14.4	32.1	6.5	
960	24.8	10.5	35.3	6.4	7.5	
1860	28.8	10.9	39.7	1.6	7.6	
2760	29.7	11.3	40.9	0.0	6.7	
3660	29.1	11.5	40.6	0.5	7.4	
4560	29.2	11.2	40.4	0.7	7.1	
5460	29.4	11.3	40.7	0.7	7.3	
6360	29.4	10.6	40.0	0.5	7.8	
7260	29.0	11.2	40.2	0.1	7.5	
8160	28.9	10.7	39.6	0.3	7.0	
0	0.0	0.0	0.0	53.0	0.0	

Table 6 Processed data –Iodo 50 °C

* Correction: + 1 minutes, slope + 20.0

KIN-80-Iodo

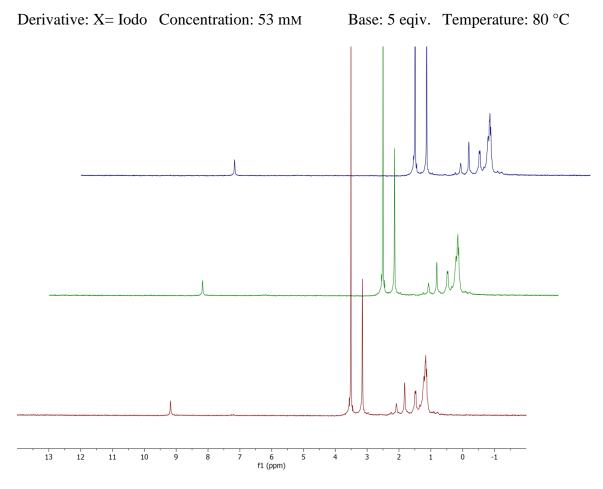


Fig. 7 Mestrenova - Iodo 80 °C

KIN-40-Bromo

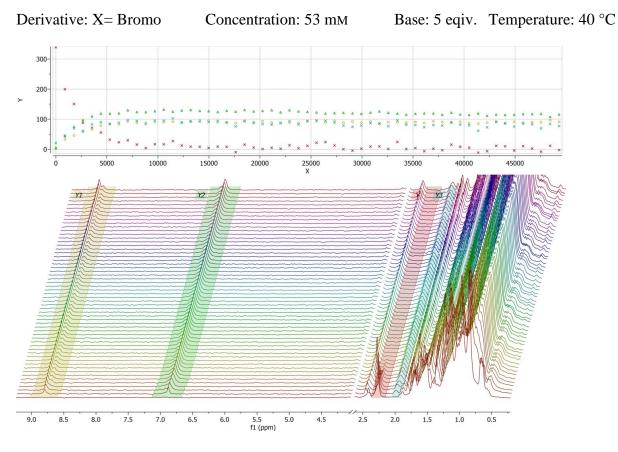


Fig. 8 Mestrenova - Bromo 40 $^\circ C$

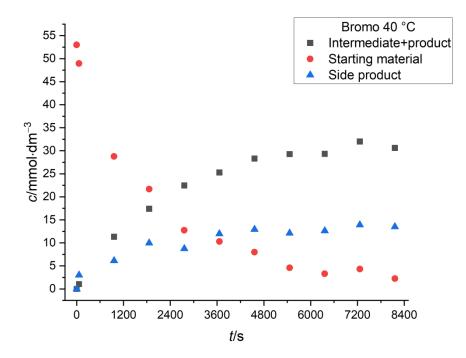


Fig. 9 Processed graph – Bromo 40 $^\circ C$

Table 7 Raw data – integral values – Bromo 40 $^\circ C$

			40 °C		
		0	a	(ma	Ê
	(u	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
S	product (8.92 ppm)	npo	ct t	(2.2	1.99
Time/s	(8.9	ite pro ppm)	+ interr product	erial	ct ()
i i i i i i i i i i i i i i i i i i i	duct	diat	pr +	mat	odu
	prod	rme	npo.	ing	de pi
		inte	J.C.	stari	sic
0	1.6	5.7	7.3	339.5	20.9
900	32.7	45.9	78.6	199.5	42.6
1800 2700	45.7 58.7	75.1 97.1	120.8 155.8	150.3 88.4	69.2 60.8
3600	66.2	109.2	175.5	71.3	83.0
4500	77.9	118.5	196.4	55.4	89.6
5400	84.4	118.7	203.1	31.7	84.1
6300	83.7	119.8	203.4	22.9	87.6
7200 8100	92.0 88.5	130.1 123.9	222.1 212.4	29.9 15.6	96.5 93.8
9000	87.7	123.9	212.4	3.6	84.1
9900	91.5	126.6	218.1	16.9	95.3
10800	89.8	132.1	222.0	16.4	95.0
11700	91.7	124.9	216.6	27.0	102.2
12600 13500	88.6 91.5	128.6 131.0	217.2 222.5	12.3 8.8	89.4 93.3
14400	95.6	127.8	223.4	8.1	92.1
15300	94.4	126.6	221.0	4.6	90.7
16200	89.5	124.0	213.5	8.9	94.5
17100	90.0	128.1	218.1	7.9	88.6
18000 18900	87.0 94.6	125.2 130.9	212.2 225.4	-9.5 14.9	76.2 93.1
19800	90.7	126.2	216.9	5.5	87.1
20700	92.9	128.0	220.9	0.3	83.3
21600	88.4	129.8	218.1	5.2	81.6
22500	88.7	123.0	211.6	1.8	86.5
23400 24300	88.8 87.7	129.8 126.0	218.6 213.7	13.2 3.2	92.9 82.5
25200	92.8	124.6	217.4	11.6	94.4
26100	93.1	122.3	215.4	21.5	95.8
27000	89.4	119.3	208.7	24.0	95.0
27900	94.5	120.1	214.7	12.4	88.5
28800 29700	88.7 92.3	121.3 119.5	210.0 211.8	0.2 -4.9	78.7 74.5
30600	88.6	119.5	206.8	-4.9	74.5
31500	92.2	121.8	214.0	8.9	86.3

32400	84.2	126.3	210.4	9.1	85.8
33300	89.9	121.1	211.0	1.0	76.5
34200	89.2	118.5	207.7	24.1	96.0
35100	88.2	115.2	203.4	0.5	81.2
36000	90.8	117.8	208.7	4.0	80.1
36900	87.1	119.4	206.5	-6.6	73.3
37800	92.5	119.0	211.5	1.9	80.6
38700	90.6	115.1	205.7	-3.4	78.6
39600	88.3	121.7	209.9	15.2	89.5
40500	91.7	115.6	207.3	8.4	81.3
41400	86.3	114.4	200.7	4.8	79.0
42300	84.9	118.8	203.7	-11.3	61.4
43200	88.3	111.8	200.1	-6.3	72.8
44100	92.0	115.2	207.2	11.4	90.7
45000	87.5	114.3	201.8	9.8	85.9
45900	91.3	114.8	206.1	-4.4	75.3
46800	87.7	117.1	204.8	10.3	85.9
47700	89.2	116.8	206.0	2.0	82.2
48600	89.5	118.2	207.7	-8.2	69.4
49500	96.5	107.9	204.4	11.4	84.0
50400	91.1	115.7	206.8	-2.6	76.9

Table 8 Processed data – Bromo 40 $^\circ C$

	Processed data - concentration normalization						
		40 °C					
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM		
60	0.2	0.8	1.0	48.9	3.0		
960	4.7	6.6	11.3	28.8	6.1		
1860	6.6	10.8	17.4	21.7	10.0		
2760	8.5	14.0	22.5	12.7	8.8		
3660	9.5	15.7	25.3	10.3	12.0		
4560	11.2	17.1	28.3	8.0	12.9		
5460	12.2	17.1	29.3	4.6	12.1		
6360	12.1	17.3	29.3	3.3	12.6		
7260	13.3	18.8	32.0	4.3	13.9		
8160	12.8	17.9	30.6	2.2	13.5		
0	0.0	0.0	0.0	53.0	0.0		

* Correction: + 1 minute, slope + 0.0

KIN-50-Bromo

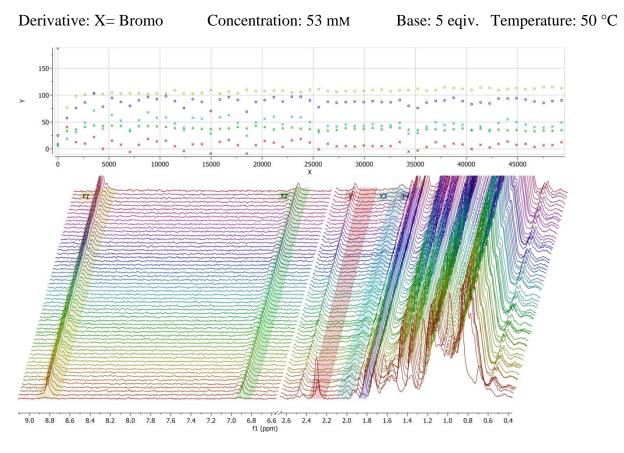


Fig. 10 Mestrenova - Bromo 50 °C

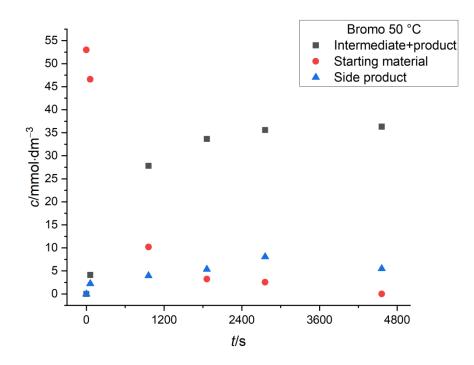


Fig. 11 Processed graph – Bromo 50 °C

Table 9 Raw data - integra	l values – Bromo 50 °C
----------------------------	------------------------

			50 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	9.2	6.4	15.6	187.5	8.6
900	77.1	34.1	111.2	40.6	15.5
1800	98.0	36.7	134.7	12.5	21.1
2700	100.9	41.6	142.5	9.8	32.0
3600	102.0	44.3	146.3	22.0	46.6
4500 5400	102.5 104.5	43.0 43.8	145.4 148.3	-0.5 15.8	21.7 40.1
6300	104.5	43.8	146.0	7.7	32.9
7200	103.0	33.8	140.0	-6.1	20.9
8100	103.5	42.7	146.2	21.4	33.5
9000	102.2	43.0	145.1	31.8	43.2
9900	103.3	42.5	145.8	20.2	35.9
10800	103.1	41.2	144.3	23.8	36.7
11700	109.2	39.1	148.3	14.6	27.4
12600	103.2	39.7	142.9	-0.7	21.3
13500	102.7	39.1	141.8	21.5	35.6
14400	104.2	37.6	141.8	15.6	35.6
15300	109.2	37.2	146.4	-12.0	17.6
16200 17100	103.0 106.5	37.8 38.6	140.7 145.1	14.2 17.6	38.0 39.7
18000	100.5	41.2	144.4	7.6	32.5
18900	109.8	38.6	148.5	-9.0	13.7
19800	107.7	43.3	151.0	8.5	32.1
20700	107.3	40.8	148.1	16.3	36.2
21600	108.2	36.7	144.9	12.2	39.3
22500	108.4	38.8	147.2	3.8	30.1
23400	105.2	40.4	145.5	18.1	39.7
24300	105.8	37.9	143.7	19.8	38.4
25200	109.9	37.7	147.6	12.5	33.5
26100 27000	111.2 107.5	35.3	146.5	0.3	19.0 27.7
27000	107.5	34.2 35.5	141.7 141.7	12.4 7.0	27.7
28800	100.2	39.0	141.7	6.1	20.1
29700	107.1	38.3	145.4	6.4	28.4
30600	108.0	37.6	145.6	6.6	28.2
31500	109.6	39.5	149.2	7.2	30.1

32400	110.3	36.8	147.1	5.9	29.1
33300	106.9	40.7	147.6	8.4	29.7
34200	109.1	39.8	148.9	15.6	31.7
35100	109.3	36.1	145.4	-2.7	18.2
36000	111.8	35.6	147.4	1.4	18.9
36900	108.5	37.1	145.6	8.1	27.2
37800	109.5	36.9	146.4	17.5	34.2
38700	114.5	34.9	149.4	10.6	28.5
39600	113.6	36.9	150.5	11.5	31.0
40500	111.7	38.6	150.3	12.3	30.8
41400	109.5	35.5	145.0	3.9	22.9
42300	114.3	38.2	152.5	11.5	27.8
43200	113.2	36.1	149.3	5.6	22.5
44100	109.2	36.4	145.6	12.5	32.0
45000	111.5	34.9	146.4	16.2	37.8
45900	113.0	35.4	148.4	11.5	35.2
46800	110.4	33.7	144.1	12.1	30.7
47700	112.2	33.3	145.5	7.1	25.7
48600	115.1	34.7	149.8	9.0	27.5
49500	115.1	34.1	149.2	8.9	28.8
50400	112.6	35.1	147.7	13.9	33.2

Table 10 Processed data – Bromo 50 °C

Processed data - concentration normalization							
		50 °C					
Time/s	product (8.92 ppm)/mM	product (8.92 ppm)/mM intermediate product (7.00 ppm)/mM		starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM		
60	2.4	1.7	4.1	46.6	2.2		
960	19.2	8.6	27.8	10.2	4.0		
1860	24.4	9.2	33.6	3.2	5.4		
2760	25.1	10.4	35.6	2.6	8.1		
3660							
4560	25.5	10.8	36.3	0.0	5.5		
0	0.0	0.0	0.0	53.0	0.0		

* Correction: + 1 minutes, slope + 0.5

KIN-80-Bromo

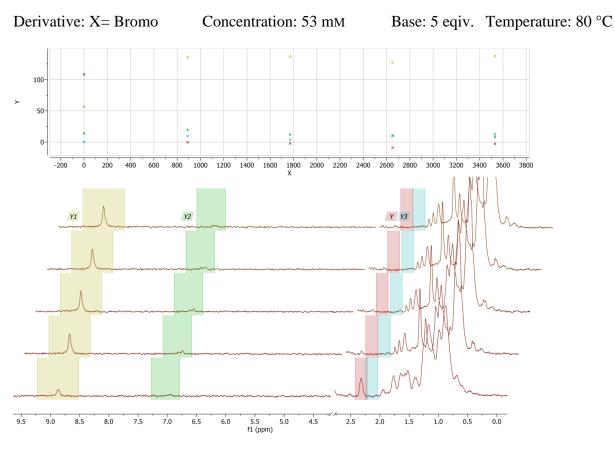


Fig. 12 Mestrenova - Chloro 80 °C

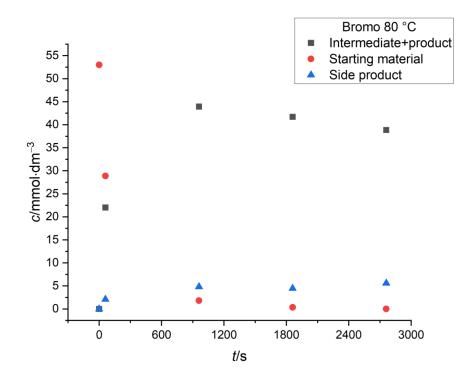


Fig. 13 Processed graph – Bromo 80 °C

Table 11 Raw data – integral values – Bromo 80 $^\circ C$

			80 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	59.1	15.6	74.6	108.3	1.9
900	142.5	19.1	161.6	0.8	12.7
1800	141.1	11.7	152.8	-5.0	11.3
2700	132.0	9.5	141.4	-6.4	15.9
3600	141.0	6.8	147.8	-1.3	16.6

Table 12 Processed data – Bromo 80 °C

	Processed data - concentration normalization						
		80 °C					
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM		
60	16.5	5.5	22.0	28.9	2.1		
960	37.5	6.4	43.9	1.8	4.8		
1860	37.1	4.6	41.7	0.3	4.5		
2760	34.9	4.0	38.8	0.0	5.6		
0	0.0	0.0	0.0	53.0	0.0		

* Correction: + 1 minute, slope + 6.4

KIN-40-Chloro

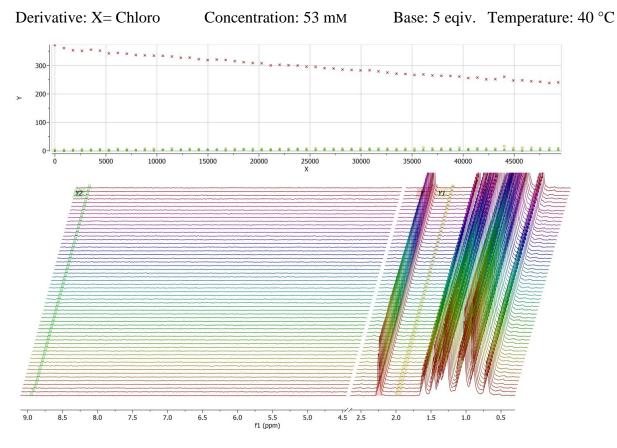


Fig. 14 Mestrenova - Chloro 40 °C

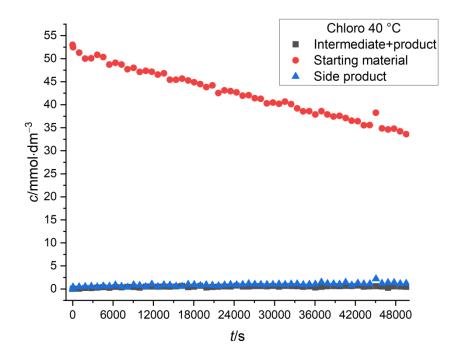


Fig. 15 Processed graph – Chloro 40 °C

			40 °	С	
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	0.5	0.0	0.5	379.7	3.2
900	0.4	0.0	0.4	371.0	3.2
1800 2700	1.4 1.4	0.0 0.0	1.4 1.4	361.6 362.2	3.8 4.0
3600	2.1	0.0	2.1	367.6	3.4
4500	2.9	0.0	2.9	364.2	4.5
5400	1.7	0.0	1.7	352.3	4.3
6300	3.1	0.0	3.1	355.2	6.2
7200	2.5	0.0	2.5	352.3	4.1
8100	3.4	0.0	3.4	345.1	2.7
9000 9900	3.0 2.1	0.0 0.0	3.0 2.1	347.1 340.7	6.6 5.6
10800	3.8	0.0	3.8	340.7	3.6
11700	3.6	0.0	3.6	341.0	7.6
12600	3.5	0.0	3.5	336.6	3.5
13500	3.7	0.0	3.7	338.6	6.5
14400	3.6	0.0	3.6	328.5	5.9
15300	4.0	0.0	4.0	328.5	4.3
16200 17100	4.7 2.8	0.0 0.0	4.7 2.8	330.2 327.3	3.7 7.3
18000	3.5	0.0	3.5	324.6	6.8
18900	4.9	0.0	4.9	321.6	5.3
19800	2.2	0.0	2.2	317.1	6.5
20700	3.1	0.0	3.1	319.7	5.8
21600	3.5	0.0	3.5	307.6	5.1
22500	3.9	0.0	3.9	311.9	6.4
23400	3.6 5.2	0.0	3.6 5.2	310.6	7.1
24300 25200	5.3 3.8	0.0 0.0	5.3 3.8	308.7 303.6	6.5 7.0
26100	3.7	0.0	3.7	304.2	8.2
27000	4.4	0.0	4.4	299.5	7.2
27900	4.5	0.0	4.5	298.5	7.2
28800	3.9	0.0	3.9	291.4	7.1
29700	4.6	0.0	4.6	292.8	7.1
30600	3.5	0.0	3.5	290.7	7.9
31500	4.7	0.0	4.7	294.0	7.1

Table 13 Raw data – integral values – Chloro 40 °C

32400	4.5	0.0	4.5	290.2	7.8
33300	4.2	0.0	4.2	283.5	8.0
34200	3.2	0.0	3.2	278.8	6.8
35100	4.0	0.0	4.0	279.1	7.2
36000	2.1	0.0	2.1	274.1	7.4
36900	3.2	0.0	3.2	279.2	10.6
37800	4.1	0.0	4.1	273.9	8.5
38700	4.5	0.0	4.5	270.9	8.0
39600	4.2	0.0	4.2	271.9	7.4
40500	4.6	0.0	4.6	268.3	10.5
41400	4.3	0.0	4.3	264.1	6.0
42300	5.1	0.0	5.1	263.4	8.9
43200	3.6	0.0	3.6	257.2	8.0
44100	4.1	0.0	4.1	257.2	8.0
45000	4.3	0.0	4.3	276.8	16.0
45900	3.8	0.0	3.8	252.2	8.7
46800	1.8	0.0	1.8	250.4	10.0
47700	4.1	0.0	4.1	251.6	10.0
48600	3.8	0.0	3.8	247.5	8.3
49500	3.1	0.0	3.1	243.0	8.7
50400	4.1	0.0	4.1	246.7	9.0

	Processed data	i - concentra		lion	
			40 °C		
				Σ	
		Q		starting material (2.25 ppm)/mM	Σ
	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	te)(r	side product (1.99 ppm)/mM
	u/(т () т	dia	opr	Э Ш
	Ĩ	duc A	μ	12	dd
Time/s	dd	diate prod ppm)/mM	product + intermediate product/mM	2.2	66
де	92	d a	int uct) le	(1.
Ē	(8)	iat(+ po	eri	t
	rct	p	pr pr	lat	npo
	odı	E	po.	E D0	pro
	bre	Ite	d	ting	de
		.=		cart	sic
60	0.1	0.0	0.1	52.5	0.4
960	0.0	0.0	0.0	51.3	0.4
1860	0.2	0.0	0.2	50.0	0.5
2760	0.2	0.0	0.2	50.1	0.6
3660	0.3	0.0	0.3	50.8	0.5
4560	0.4	0.0	0.4	50.4	0.6
5460	0.2	0.0	0.2	48.7	0.6
6360	0.4	0.0	0.4	49.1	0.9
7260	0.3	0.0	0.3	48.7	0.6
8160					
	0.5	0.0	0.5	47.7	0.4
9060	0.4	0.0	0.4	48.0	0.9
9960	0.3	0.0	0.3	47.1	0.8
10860	0.5	0.0	0.5	47.4	0.5
11760	0.5	0.0	0.5	47.1	1.1
12660	0.5	0.0	0.5	46.5	0.5
13560	0.5	0.0	0.5	46.8	0.9
14460	0.5	0.0	0.5	45.4	0.8
15360	0.5	0.0	0.5	45.4	0.6
16260	0.7	0.0	0.7	45.6	0.5
17160	0.4	0.0	0.4	45.2	1.0
18060	0.5	0.0	0.5	44.9	0.9
18960	0.7	0.0	0.7	44.5	0.7
19860	0.3	0.0	0.3	43.8	0.9
20760	0.4	0.0	0.4	44.2	0.8
20700 21660	0.4	0.0	0.4	44.2	0.8
22560	0.5	0.0	0.5	43.1	0.9
23460	0.5	0.0	0.5	42.9	1.0
24360	0.7	0.0	0.7	42.7	0.9
25260	0.5	0.0	0.5	42.0	1.0
26160	0.5	0.0	0.5	42.0	1.1
27060	0.6	0.0	0.6	41.4	1.0
27960	0.6	0.0	0.6	41.3	1.0
28860	0.5	0.0	0.5	40.3	1.0

Table 14 Processed data – Chloro 40 $^\circ C$

Processed data - concentration normalization

29760	0.6	0.0	0.6	40.5	1.0
30660	0.5	0.0	0.5	40.2	1.1
31560	0.7	0.0	0.7	40.6	1.0
32460	0.6	0.0	0.6	40.1	1.1
33360	0.6	0.0	0.6	39.2	1.1
34260	0.4	0.0	0.4	38.5	0.9
35160	0.5	0.0	0.5	38.6	1.0
36060	0.3	0.0	0.3	37.9	1.0
36960	0.4	0.0	0.4	38.6	1.5
37860	0.6	0.0	0.6	37.9	1.2
38760	0.6	0.0	0.6	37.4	1.1
39660	0.6	0.0	0.6	37.6	1.0
40560	0.6	0.0	0.6	37.1	1.5
41460	0.6	0.0	0.6	36.5	0.8
42360	0.7	0.0	0.7	36.4	1.2
43260	0.5	0.0	0.5	35.5	1.1
44160	0.6	0.0	0.6	35.6	1.1
45060	0.6	0.0	0.6	38.3	2.2
45960	0.5	0.0	0.5	34.9	1.2
46860	0.2	0.0	0.2	34.6	1.4
47760	0.6	0.0	0.6	34.8	1.4
48660	0.5	0.0	0.5	34.2	1.1
49560	0.4	0.0	0.4	33.6	1.2
0	0.0	0.0	0.0	53.0	0.0

* Correction: + 1 minute, slope + 0.0

KIN-60-Chloro

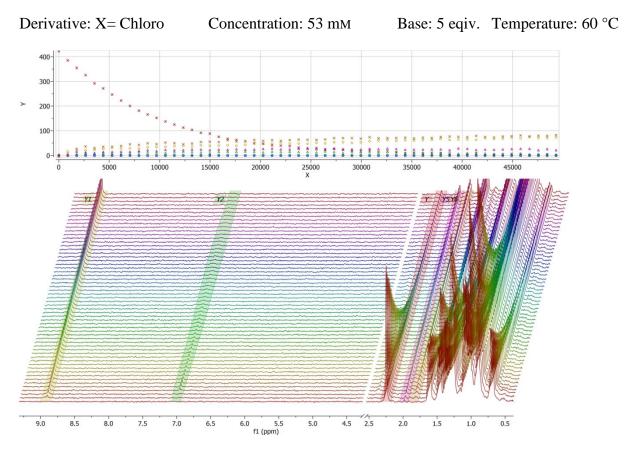


Fig. 16 Mestrenova - Chloro 60 °C

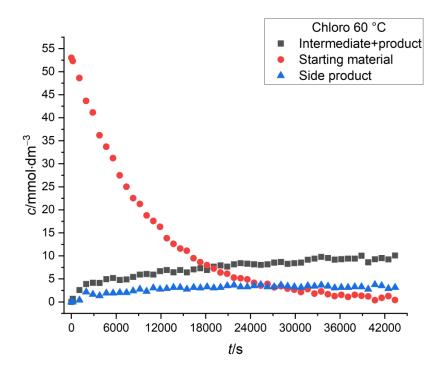


Fig. 17 Processed graph – Chloro 60 $^\circ C$

Table 15 Raw data – integral	values – Chloro 60 °C
------------------------------	-----------------------

			60 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0 900 1800 2700 3600 4500 5400 6300 7200 8100 9000 9900 10800 10800 10800 11700 12600 13500 14400 15300 16200 17100 18000 19800 20700 21600 22500 23400 24300	2.2 16.0 22.0 21.0 22.0 26.0 31.0 28.0 29.0 28.0 33.0 34.0 35.0 38.0 39.0 36.0 41.0 39.0 40.0 41.0 52.0 49.0 49.0 48.0 51.0 48.0 51.0 40.0 51.0 40.0 51.0 40.0 51.0 40.0 50.0	0.4 1.9 6.5 9.7 8.4 11.0 8.0 7.6 7.6 13.0 12.0 12.0 12.0 12.0 12.0 13.0 14.0 13.0 14.0 13.0 14.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 13.0 15.0 14.0 15.0 13.0 15.0 13.0 15.0 14.0 15.0 13.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 13.0 15.0 14.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 15.0 14.0 14.0 14.0 12.0 12.0	2.6 17.9 28.5 30.7 30.4 37.0 39.0 35.6 36.6 41.0 45.0 46.0 45.0 51.0 51.0 53.0 49.0 53.0 49.0 53.0 49.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 48.9 54.0 53.0 61.0 59.0 61.0 59.0 63.0 62.0 63.0 62.0 63.0	420.0 390.0 350.0 330.0 290.0 270.0 250.0 220.0 200.0 180.0 170.0 150.0 140.0 130.0 110.0 100.0 92.0 88.0 75.0 68.0 63.0 57.0 50.0 48.0 41.0 40.0 38.0 32.0 27.0 30.0	-1.4 1.8 16.0 12.0 9.4 14.0 14.0 15.0 15.0 15.0 17.0 23.0 21.0 24.0 24.0 24.0 24.0 23.0 24.0 23.0 25.0 23.0 25.0
27000 27900 28800 29700 30600 31500	49.0 53.0 54.0 51.0 53.0 58.0	17.0 14.0 9.8 14.0 13.0 13.0	66.0 67.0 63.8 65.0 66.0 71.0	24.0 26.0 22.0 20.0 16.0 21.0	25.0 28.0 26.0 25.0 24.0 27.0

3240	0 60.0	13.0	73.0	13.0	26.0
3330	0 62.0	14.0	76.0	17.0	28.0
3420	0 60.0	14.0	74.0	12.0	26.0
3510	0 62.0	9.2	71.2	8.7	23.0
3600	0 60.0	12.0	72.0	11.0	24.0
3690	0 62.0	11.0	73.0	7.3	24.0
3780	0 63.0	10.0	73.0	11.0	25.0
3870	0 67.0	11.0	78.0	9.2	25.0
3960	0 63.0	3.5	66.5	8.3	21.0
4050	0 65.0	6.9	71.9	1.6	29.0
4140	0 65.0	8.9	73.9	5.8	27.0
4230	0 63.0	8.6	71.6	8.7	22.0
4320	0 70.0	8.4	78.4	1.8	24.0
4410	0 67.0	6.2	73.2	3.2	24.0
4500	0 68.0	3.3	71.3	5.8	25.0
4590	0 72.0	5.0	77.0	6.1	26.0
4680	0 69.0	7.6	76.6	5.1	27.0
4770	0 75.0	4.6	79.6	1.3	27.0
4860	0 71.0	5.3	76.3	1.5	22.0
4950	0 70.0	5.2	75.2	4.4	26.0
5040	0 73.0	3.6	76.6	0.3	21.0

Table 16 Processed data – Chloro 60 °C

Line 2 Line 2	
1800.40.20.752.310802.20.42.648.619802.91.03.943.628802.81.44.241.237802.91.24.136.246803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	
10802.20.42.648.619802.91.03.943.628802.81.44.241.237802.91.24.136.246803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	
19802.91.03.943.628802.81.44.241.237802.91.24.136.246803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	0.0
28802.81.44.241.237802.91.24.136.246803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	0.4
37802.91.24.136.246803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	2.2
46803.41.54.933.755804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	1.7
55804.01.25.231.264803.71.14.827.573803.81.14.925.082803.71.85.422.5	1.3
64803.71.14.827.573803.81.14.925.082803.71.85.422.5	1.9
73803.81.14.925.082803.71.85.422.5	1.9 2.0
8280 3.7 1.8 5.4 22.5	2.0
	2.4
9180 4.3 1.7 5.9 21.3	2.8
10080 4.4 1.7 6.1 18.8	2.3
10980 4.5 1.4 5.9 17.6	3.0
11880 4.9 1.8 6.7 16.3	2.8
12780 5.0 1.9 6.9 13.8	2.9
13680 4.6 1.8 6.4 12.6	3.2
145805.31.76.911.6	3.2
15480 5.0 1.4 6.4 11.1	2.8
16380 5.1 1.9 7.1 9.5	3.2
17280 5.3 2.0 7.3 8.6	3.0
18180 5.0 1.9 6.9 8.0	3.3
19080 5.5 2.2 7.7 7.3 10000 6.0 1.0 7.0 6.4	3.0
19980 6.0 1.9 7.9 6.4 20880 6.0 1.7 7.7 6.1	3.2
208806.01.77.76.1217806.12.08.25.3	3.5 3.7
21780 6.1 2.0 8.2 5.3 22680 6.6 1.8 8.4 5.1	3.3
23580 6.3 2.0 8.3 4.9	3.3
24480 6.3 1.9 8.2 4.1	3.5
25380 6.1 1.9 8.0 3.5	3.8
26280 6.5 1.7 8.2 3.9	3.3
27180 6.3 2.3 8.5 3.2	3.3
28080 6.8 1.9 8.7 3.4	3.7
28980 6.9 1.4 8.3 2.9	

Processed data - concentration normalization

29880	6.5	1.9	8.4	2.7	3.3
30780	6.8	1.8	8.5	2.2	3.2
31680	7.4	1.8	9.2	2.8	3.5
32580	7.6	1.8	9.4	1.8	3.4
33480	7.9	1.9	9.8	2.3	3.7
34380	7.6	1.9	9.5	1.7	3.4
35280	7.9	1.3	9.2	1.3	3.0
36180	7.6	1.7	9.3	1.5	3.2
37080	7.9	1.5	9.4	1.1	3.2
37980	8.0	1.4	9.4	1.5	3.3
38880	8.5	1.5	10.0	1.3	3.3
39780	8.0	0.6	8.6	1.2	2.8
40680	8.2	1.0	9.3	0.4	3.8
41580	8.2	1.3	9.5	0.9	3.5
42480	8.0	1.2	9.2	1.3	2.9
43380	8.9	1.2	10.1	0.4	3.2
0	0.0	0.0	0.0	53.0	0.0

* Correction: + 3 minutes, slope + 1.4

KIN-70-Chloro

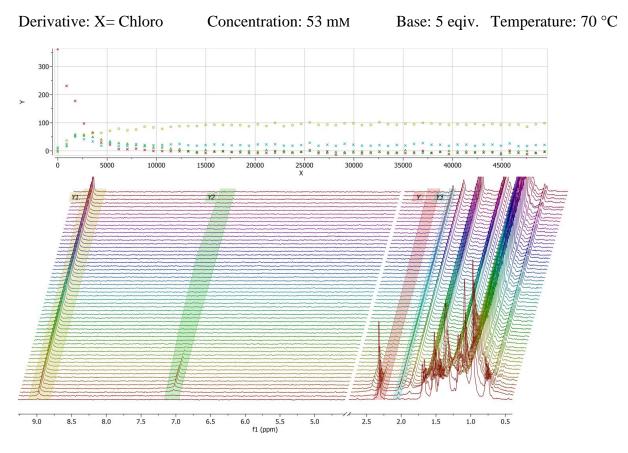


Fig. 18 Mestrenova - Chloro 70 °C

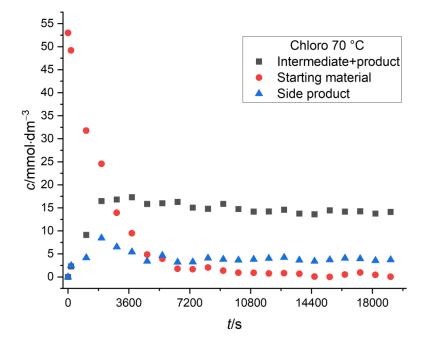


Fig. 19 Processed graph – Chloro 70 °C

	- integrai values – Chior		70 °C		
		-	70 0	-	
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	3.7	-0.9	2.8	361.7	11.4
900	36.9	17.1	54.0	231.0	23.9
1800	58.3	50.9	109.2	177.1	56.1
2700	57.8	53.9	111.7	97.3	41.6
3600	66.2	49.2	115.3	63.8	33.5
4500	64.0	40.4	104.4	29.3	18.4
5400	71.2	34.3	105.5	22.3	28.0
6300	79.0	28.7	107.7	6.1	16.9
7200	73.1	25.4	98.5	5.4	17.1
8100	76.2	20.3	96.5	8.0	23.5
9000	86.1	18.4	104.5	3.1	21.6
9900	83.3	12.8	96.1	-0.2	20.1
10800 11700	78.3 85.0	13.6 7.2	91.9 92.2	-0.5 -1.5	21.4 23.0
12600	88.0	6.9	92.2	-1.5	23.0
13500	88.7	0.9	88.8	-1.0	24.3
14400	88.8	-1.2	87.6	-6.7	18.4
15300	92.6	1.4	94.0	-7.2	20.8
16200	93.3	-1.3	92.0	-3.4	23.2
17100	92.0	0.4	92.4	-0.1	22.6
18000	91.4	-2.7	88.7	-4.0	19.5
18900	91.5	-0.1	91.4	-6.9	20.6
19800	88.1	0.8	88.9	-10.5	18.5
20700	94.2	-2.1	92.1	-8.2	23.3
21600	88.7	1.2	89.8	-4.2	22.9
22500	99.5	-5.7	93.7	-3.2	23.5
23400	88.3	1.1	89.3	-7.9	18.6
24300	91.6	-3.5	88.1	-6.3	18.6
25200	96.2	-2.7	93.4	-2.7	20.7
26100	101.5	-0.5	101.0	4.2	28.9
27000	92.6	-0.6	92.1	-8.7	18.4
27900 28800	93.0 91.7	-2.1 -1.9	90.9 89.8	-1.5 -10.0	21.7 17.6
28800	91.7	-1.9 -1.6	96.2	-10.0 -5.0	25.4
30600	97.7	-1.6 0.7	96.2	-5.0 -1.6	25.4
31500					
31500	91.5	-2.3	89.2	-8.3	18.6

Table 17 Raw data – integral values – Chloro 70 °C

32400	92.8	3.0	95.8	-7.9	18.7
33300	102.2	-0.6	101.6	-3.3	20.8
34200	95.2	-0.6	94.6	-5.6	17.7
35100	93.2	-2.3	90.9	-7.4	21.1
36000	97.0	-1.5	95.5	-5.4	19.2
36900	94.7	-5.2	89.5	-6.7	24.6
37800	99.7	-6.5	93.2	-0.1	27.8
38700	97.4	-5.6	91.8	-6.1	21.6
39600	95.0	-1.6	93.4	-4.4	22.0
40500	92.6	-0.5	92.1	-6.4	17.8
41400	95.1	-2.2	92.9	-8.0	22.4
42300	93.4	-1.7	91.7	-6.6	22.2
43200	96.8	-4.6	92.2	-5.6	18.1
44100	92.1	-0.8	91.3	-4.6	22.5
45000	96.1	-4.8	91.3	-3.1	22.2
45900	93.0	-6.1	86.9	-13.1	18.1
46800	93.0	-5.9	87.1	-0.8	26.4
47700	94.0	-1.0	92.9	-5.2	16.7
48600	85.6	1.2	86.8	-9.6	17.2
49500	95.1	-5.1	90.0	-7.5	20.4
50400	98.4	-2.1	96.3	-2.7	21.3

	Processed data	- concentra	tion normalizatio	on	
			70 °C		
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM
180	1.5	0.8	2.3	49.2	2.5
1080	5.9	3.2	9.1	31.8	4.2
1980	8.7	7.7	16.5	24.6	8.4
2880	8.7	8.1	16.8	13.9	6.5
3780	9.8	7.5	17.3	9.5	5.4
4680	9.5	6.3	15.8	4.9	3.4
5580	10.5	5.5	16.0	3.9	4.7
6480	11.5	4.8	16.3	1.8	3.2
7380	10.7	4.3	15.0	1.7	3.2
8280	11.1	3.7	14.8	2.0	4.1
9180	12.4	3.4	15.9	1.4	3.8
10080	12.1	2.7	14.7	0.9	3.6
10980	11.4	2.8	14.2	0.9	3.8
11880	12.3	1.9	14.2	0.8	4.0
12780	12.7	1.9	14.6	0.8	4.2
13680	12.8	1.0	13.8	0.7	3.7
14580	12.8	0.8	13.6	0.1	3.4
15480 16380	13.3 13.4	1.1	14.4 14.2	0.0 0.5	3.7 4.1
16380	13.4	0.8 1.0	14.2	0.5	4.1 4.0
17280	13.2	1.0 0.6	14.2	0.9	4.0
19080	13.2	0.6	13.7 14.1	0.4	3.6
19080	0.0	0.9	0.0	53.0	0.0
0	0.0	0.0	0.0	55.0	0.0

Table 18 Processed data – Chloro 70 °C

Processed data - concentration normalization

* Correction: + 3 minutes, slope + 7.2

KIN-80-Chloro

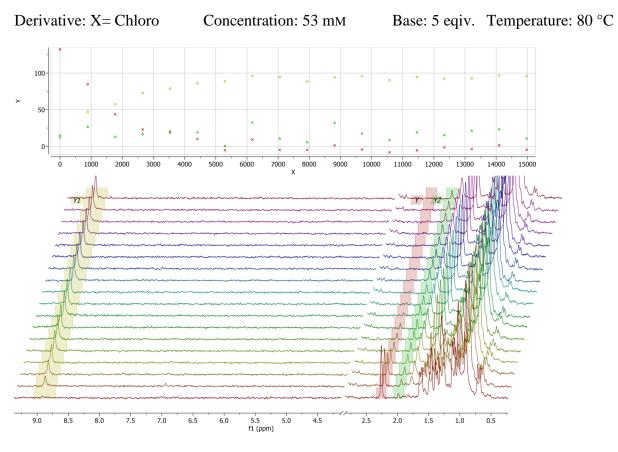


Fig. 20 Mestrenova – Chloro 80 °C

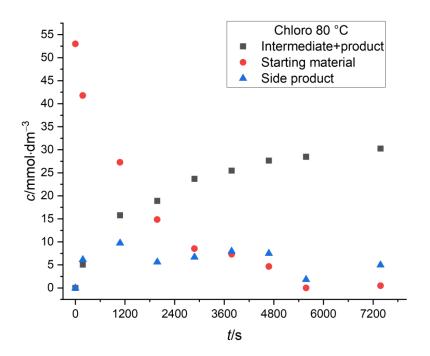


Fig. 21 Processed graph – Chloro 80 °C

Table 19	Raw data –	- integral	values - Chlore	0 80 °C
----------	------------	------------	-----------------	---------

			80 °C		
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)
0	11.6	0.0	11.6	132.7	15.1
900	46.9	0.0	46.9	84.8	27.0
1800	57.2	0.0	57.2	43.9	13.5
2700	73.0	0.0	73.0	23.0	16.9
3600	78.8	0.0	78.8	18.9	21.2
4500	86.0	0.0	86.0	10.2	19.6
5400	88.8	0.0	88.8	-5.1	0.9
6300	96.3	0.0	96.3	9.4	33.0
7200	94.6	0.0	94.6	-3.5	11.3
8100	88.1	0.0	88.1	-8.2	6.1
9000	94.1	0.0	94.1	2.1	32.7
9900	95.7	0.0	95.7	-7.4	17.9
10800	90.1	0.0	90.1	-8.7	9.0
11700	94.7	0.0	94.7	-3.3	19.6
12600	92.3	0.0	92.3	-1.0	15.7
13500	92.8	0.0	92.8	-2.0	21.8
14400	96.7	0.0	96.7	-0.4	24.0
15300	96.0	0.0	96.0	-3.9	11.3

Table 20 Processed data – Chloro 80 $^\circ C$

Processed data - concentration normalization							
			80 °C	30 °C			
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)		
180	5.1	0.0	5.1	41.8	6.1		
1080	15.8	0.0	15.8	27.3	9.7		
1980	18.9	0.0	18.9	14.9	5.6		
2880	23.7	0.0	23.7	8.5	6.7		
3780	25.5	0.0	25.5	7.3	8.0		
4680	27.6	0.0	27.6	4.7	7.5		
5580	28.5	0.0	28.5	0.0	1.8		
6480							
7380	30.3	0.0	30.3	0.5	5.0		
0	0.0	0.0	0.0	53.0	0.0		

* Correction: + 3 minutes, slope + 5.1

KIN-80-Chloro 2xC

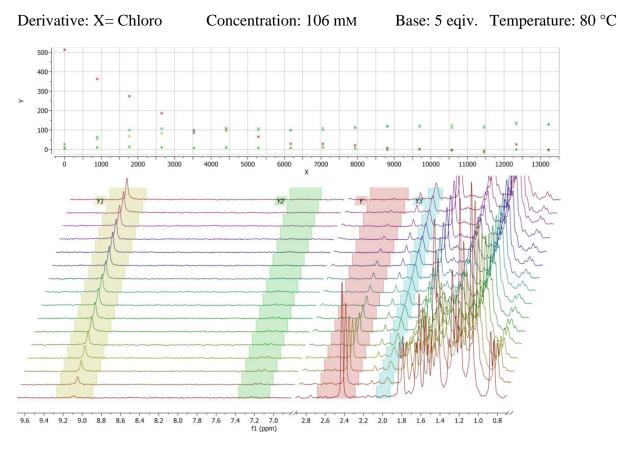


Fig. 22 Mestrenova – Chloro 80 °C – 2x higher concentration of starting material

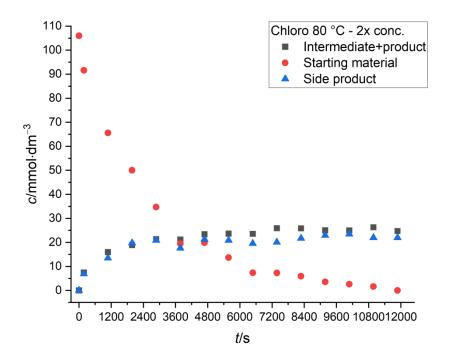


Fig. 23 Processed graph – Chloro 80 $^\circ$ C – 2x higher concentration of starting material

	80 °C - 2.0x c					
Time (a	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)	
Time/s 0.00	11.5	4.9	16.4	513.1	26.9	
900.00	53.6	4.5 11.9	65.5	363.4	64.3	
1800.00	67.9	14.4	82.3	273.9	100.5	
2700.00	83.1	12.9	96.1	186.1	106.8	
3600.00	86.1	9.3	95.4	98.6	88.0	
4500.00	96.0	12.2	108.2	101.1	109.1	
5400.00	99.5	10.1	109.6	65.4	106.8	
6300.00	98.9	10.2	109.1	29.2	99.1	
7200.00	109.5	13.0	122.5	28.7	102.3	
8100.00	115.0	7.1	122.1	20.8	111.6	
9000.00	119.1	-1.7	117.4	7.3	118.6	
9900.00	116.4	0.7	117.2	2.0	121.7	
10800.00	126.4	-1.6	124.8	-3.7	113.2	
11700.00	120.4	-4.6	115.8	-13.1	112.9	
12600.00	130.2	0.8	130.9	25.8	136.3	
13500.00	128.3	0.2	128.5	-2.7	128.5	

Table 21 Raw data – integral values – Chloro 80 $^{\circ}C$ – 2x higher concentration of starting material

Time/s Mu/um 4.3 3.1 7.4 91.6 7.0 180.00 4.3 3.1 7.4 91.6 7.0 180.00 11.6 4.4 16.0 65.6 13.5 1980.00 14.1 4.8 18.9 50.0 19.8 2880.00 16.8 4.5 21.3 34.7 20.9 3780.00 17.3 3.9 21.2 19.4 17.6 4680.00 19.5 4.1 23.5 7.4 19.5 7380.00 21.3 4.5 25.9 7.3 20.1 6480.00 19.5 4.1 23.5 7.4 19.5 7380.00 21.3 4.5 25.9 7.3 20.1 8280.00 22.3 3.5 25.8 5.9 21.7 9180.00 23.0 2.0 25.0 3.5 22.9 10080.00 23.0 2.0 25.0 3.5 22.9 1080.00 2				80 °C - 2.0x c	:	
180.004.33.17.491.67.01080.0011.64.416.065.613.51980.0014.14.818.950.019.82880.0016.84.521.334.720.93780.0017.33.921.219.417.64680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9		product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	tarting material (2.25 ppm)/mM	side product (1.99 ppm)/mM
1080.0011.64.416.065.613.51980.0014.14.818.950.019.82880.0016.84.521.334.720.93780.0017.33.921.219.417.64680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9		4.2	2.1	7 /		7.0
1980.0014.14.818.950.019.82880.0016.84.521.334.720.93780.0017.33.921.219.417.64680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
2880.0016.84.521.334.720.93780.0017.33.921.219.417.64680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
3780.0017.33.921.219.417.64680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0023.21.524.70.021.9						
4680.0019.04.423.419.921.35580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
5580.0019.64.023.613.720.96480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
6480.0019.54.123.57.419.57380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
7380.0021.34.525.97.320.18280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
8280.0022.33.525.85.921.79180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
9180.0023.02.025.03.522.910080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
10080.0022.62.425.02.623.510980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
10980.0024.32.026.31.622.011880.0023.21.524.70.021.9						
11880.0023.21.524.70.021.9						
	0.00	0.0	0.0	0.0	106.0	0.0

Table 22 Processed data – Chloro 80 $^{\circ}C$ – 2x higher concentration of starting material

* Correction: + 3 minutes, slope + 13.1

KIN-80-Chloro 3xC

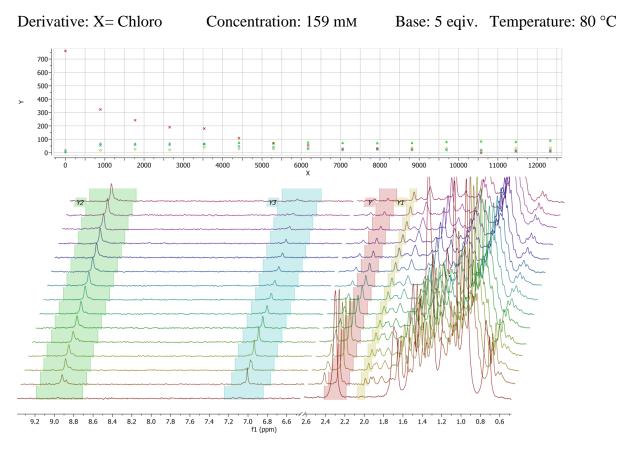


Fig. 24 Mestrenova – Chloro 80 °C – 3x higher concentration of starting material

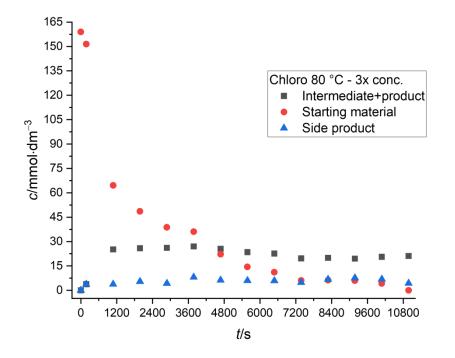


Fig. 25 Processed graph – Chloro 80 $^{\circ}C$ – 3x higher concentration of starting material

	80 °C - 3.0x c					
	product (8.92 ppm) intermediate product (7.00 ppm)		product + intermediate product	starting material (2.25 ppm)	side product (1.99 ppm)	
Time/s					47.4	
0.00	7.3	8.7	16.1	749.6	17.4	
900.00	69.2	52.9	122.2	318.8	17.6	
1800.00	67.3	58.5	125.8	239.8	25.4	
2700.00	68.4	58.5	127.0	190.9	19.9	
3600.00	66.8	64.5	131.3	177.6	38.9	
4500.00	75.2	48.9	124.2	108.6	29.7	
5400.00	71.3	42.6	113.9	70.0	28.3	
6300.00	77.1	32.4	109.6	53.9	27.9	
7200.00	74.0	20.6	94.7	28.6	22.8	
8100.00	72.2	24.2	96.4	29.8	32.3	
9000.00	74.4	19.6	94.0	28.3	36.7	
9900.00	80.8	18.7	99.5	19.4	32.5	
10800.00	85.6	16.6	102.2	-1.3	20.5	
11700.00	82.2	13.6	95.8	10.1	30.2	
12600.00	92.2	7.3	99.5	15.8	34.9	

Table 23 Raw data – integral values – Chloro 80 $^\circ$ C – 3x higher concentration of starting material

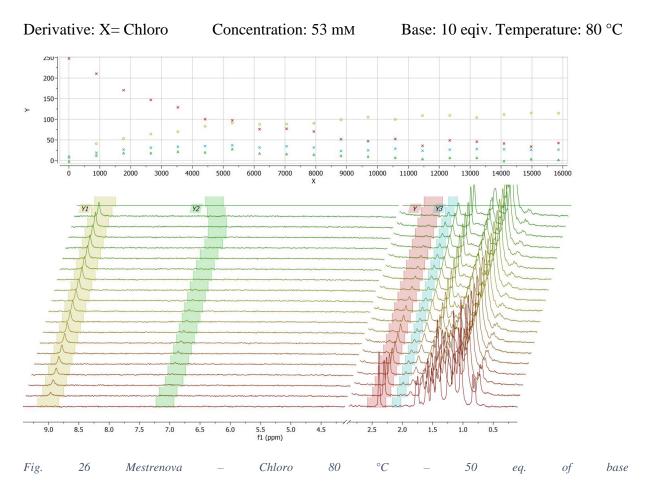

Pro	cessed data - concentration normalization						
	80 °C - 3.0x c						
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM		
180.00	1.7	2.0	3.8	151.5	3.8		
1080.00	14.2	10.9	25.2	64.6	3.8		
1980.00	13.8	12.1	25.9	48.6	5.4		
2880.00	14.1	12.1	26.1	38.8	4.3		
3780.00	13.7	13.3	27.0	36.1	8.1		
4680.00	15.4	10.1	25.6	22.2	6.2		
5580.00	14.6	8.9	23.5	14.4	6.0		
6480.00	15.8	6.8	22.6	11.1	5.9		
7380.00	15.2	4.4	19.6	6.0	4.9		
8280.00	14.8	5.1	20.0	6.3	6.8		
9180.00	15.3	4.2	19.5	6.0	7.7		
10080.00	16.6	4.0	20.6	4.2	6.8		
10980.00	17.5	3.6	21.1	0.0	4.4		
0.00	0.0	0.0	0.0	159.0	0.0		

Table 24 Processed data – Chloro 80 $^\circ$ C – 3x higher concentration of starting material

Processed data - concentration normalization

* Correction: + 3 minutes, slope + 1.3

KIN-80-Chloro-50B

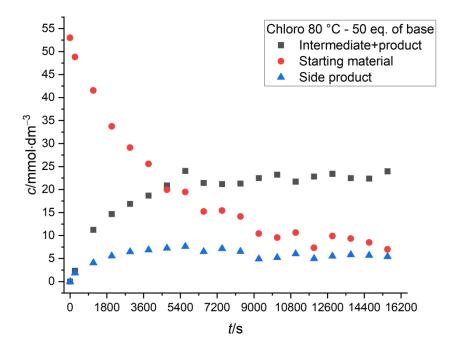


Fig. 27 Processed graph – Chloro 80 $^{\circ}C$ – 50 eq. of base

	80 °C 50 B							
6	2 ppm)	lct (7.00 ppm)		(2.25 ppm)	side product (1.99 ppm)			
Time/s	product (8.92 ppm)	intermediate product (7.00 ppm)	product + intermediate product	starting material (2.25 ppm)				
0	10.1	-1.9	8.1	247.6	7.7			
900	41.0	12.7	53.7	210.5	18.9			
1800	53.2	18.0	71.2	170.5	26.5			
2700	64.5	18.0	82.5	146.9	31.2			
3600	70.2	21.5	91.7	129.0	33.4			
4500	82.8	20.1	102.9	100.1	35.1			
5400	91.3	27.9	119.1	97.6	37.2			
6300	88.2	17.6	105.7	76.0	31.4			
7200	88.6	16.0	104.6	77.0	34.6			
8100	90.3	14.8	105.1	70.4	31.6			
9000	99.2	11.9	111.1	51.5	23.2			
9900	105.0	10.0	115.0	46.9	24.8			
10800	99.9	7.3	107.2	52.4	28.9			
11700	108.8	4.1	112.9	35.7	23.5			
12600	109.3	6.6	115.9	48.7	26.4			
13500	104.2	7.0	111.1	45.8	27.8			
14400	111.7	-1.1	110.6	41.5	27.3			
15300	115.3	3.5	118.7	34.0	25.9			
16200	114.7	1.8	116.5	42.6	26.2			

Table 25 Raw data – integral values – Chloro 80 $^{\circ}C$ – 50 eq. of base

Processed data - concentration normalization							
	80 °C 50 B						
Time/s	product (8.92 ppm)/mM	intermediate product (7.00 ppm)/mM	product + intermediate product/mM	starting material (2.25 ppm)/mM	side product (1.99 ppm)/mM		
240	2.3	0.0	2.3	48.8	1.9		
1140	8.4	2.9	11.2	41.5	4.1		
2040	10.8	3.9	14.7	33.7	5.6		
2940	13.0	3.9	16.9	29.1	6.5		
3840	14.1	4.6	18.7	25.6	6.9		
4740	16.6	4.3	20.9	20.0	7.2		
5640	18.2	5.8	24.0	19.5	7.6		
6540	17.6	3.8	21.4	15.2	6.5		
7440	17.7	3.5	21.2	15.4	7.1		
8340	18.0	3.3	21.3	14.1	6.5		
9240	19.8	2.7	22.5	10.4	4.9		
10140	20.9	2.3	23.2	9.5	5.2		
11040	19.9	1.8	21.7	10.6	6.0		
11940	21.7	1.2	22.8	7.4	5.0		
12840	21.7	1.7	23.4	9.9	5.5		
13740	20.7	1.7	22.5	9.3	5.8		
14640	22.2	0.2	22.4	8.5	5.7		
15540	22.9	1.0	24.0	7.0	5.4		
0	0.0	0.0	0.0	53.0	0.0		

Table 26 Processed data – Chloro 80 $^{\circ}C$ – 50 eq. of base

* Correction: + 4 minutes, slope + 1.9

Evaluation of kinetic data points for solvolysis of 1-halogeno-2-amine adamantanes using kinetic model for parallel reaction.

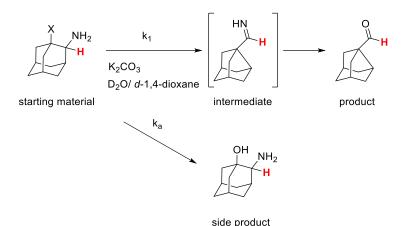


Figure 1 Kinetic model for solvolysis of 1-halogeno-2-amine adamantanes used; X= I, Br and Cl.

1-Halogen 2-amine adamantanes decompose in alkali aqueous solution to form imine as the main product and alcohol as a side product (Fig. 1). The imine product hydrolyses to an aldehyde. Kinetics of formation of the main product was evaluated accordingly to monomolecular model for parallel reaction using Eqs. 1-7. Concentration of product was taken as the sum of conc. of imine plus conc. of aldehyde. Experimental data points and regression curves for 1-iodo-2-amine adamantane solvolysis at 50 °C and the initial concentration of starting material equals to 53 mg/L = $a_0 = [starting material] + [product] + [side product]$ are exampled in Fig. 2. Calculated apparent rate constants are summarised in Tab. 1 for several temperatures. The chlorine derivative reacted slowly at 60 °C so that its rate constants at 50 °C in Tab. 1 were extrapolated using experimental data measured at 60, 70 and 80 °C and Arrhenius equation.

$$-\frac{d[product]}{dt} = (k_I + k_A)[starting material]$$
(1)

$$\frac{d[product]}{dt} = k_I[starting material]$$
(2)

$$\frac{d[side \ product]}{dt} = k_A[starting \ material] \tag{3}$$

$$\sum k = k_I + k_A \tag{4}$$

$$[starting material] = a_0 e^{-(\sum k)t}$$
(5)

$$[starting material] = \frac{k_I a_0}{\sum k} \left(e^{-(\sum k)t} + 1 \right)$$
(6)

$$[side \ product] = \frac{k_A a_0}{\sum k} \left(e^{-(\sum k)t} + 1 \right)$$
(7)

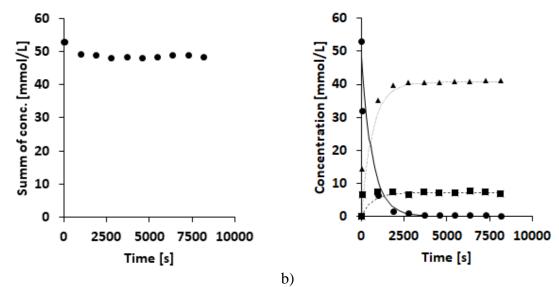
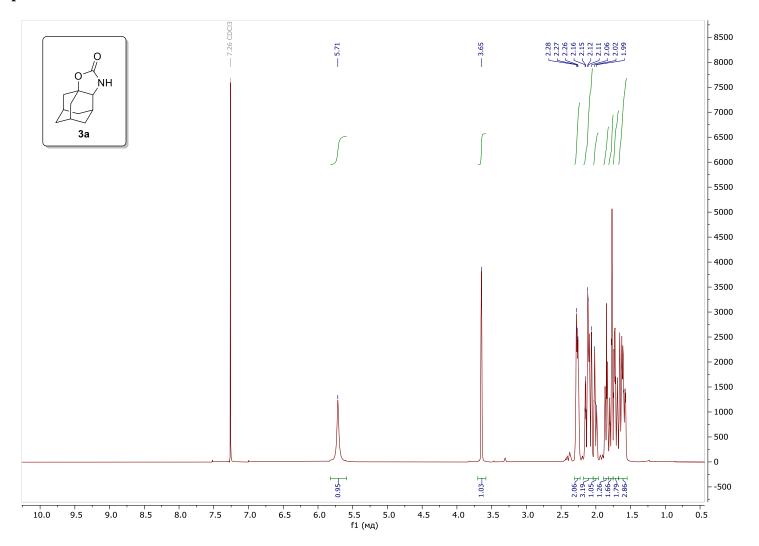
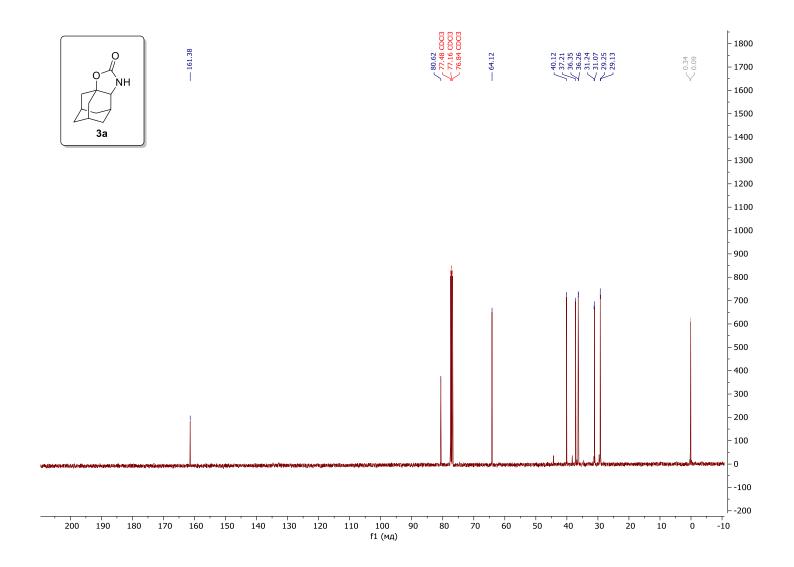


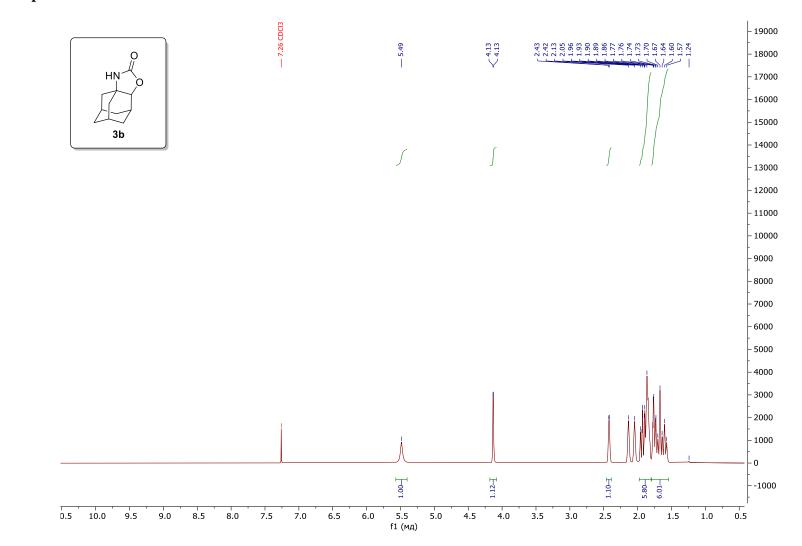
Figure 2 Kinetic data for solvolysis of 1-iodo-2-amine adamantane at 50 °C: a) Dependence of sum of concentrations $a_0 = [starting material] + [product] + [side product]$ in time; b) Data points and regression curves of time dependence of concentrations of starting material, product and side product.

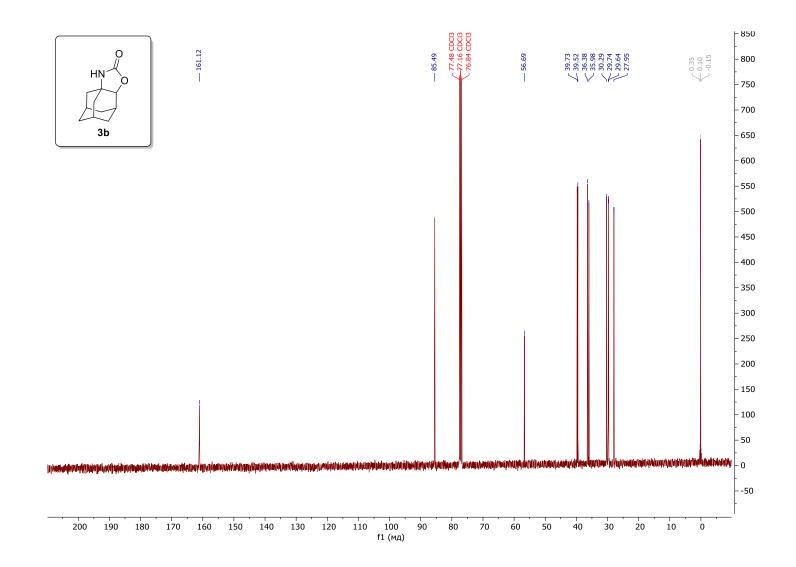
a)

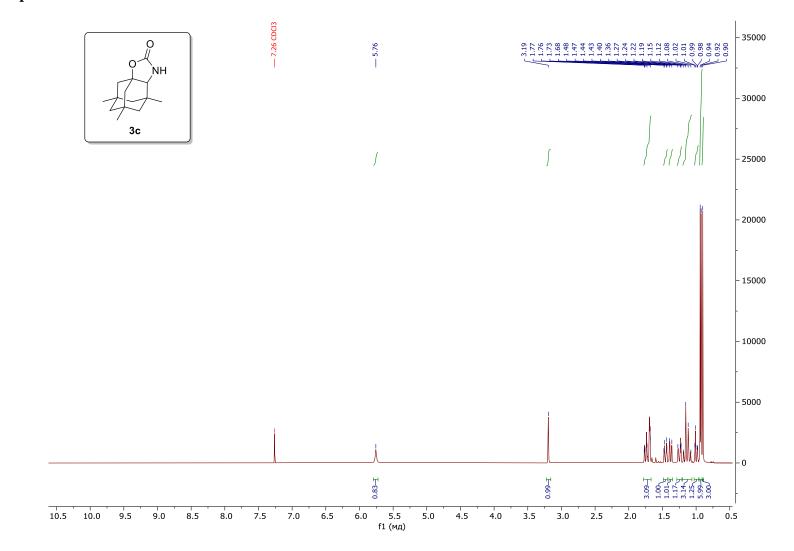

Table 1 Apparent first order kinetic constants of solvolysis of 1-halogeno-2-amino adamantanes.

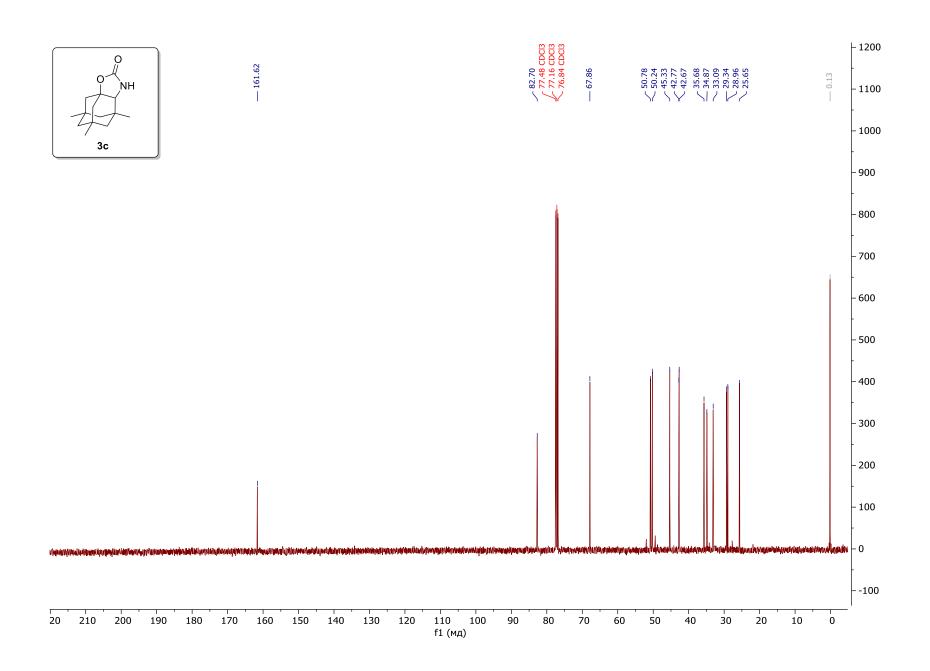

	X = I				X = Br		X = Cl		
Temp.	Σk	\mathbf{k}_1	kA	Σk	\mathbf{k}_1	kA	Σk	\mathbf{k}_1	kA
[°C]	×10 ⁻⁵ [1/s]			:	×10 ⁻⁵ [1/s]		×10 ⁻⁵ [1/s]		
25	13	8.0	5.0						
40	60	43	17	40	27	13			
50	150	130	23	150	125	21	4.0	3.0	1.0
60							10	7.0	2.0
70							38	31	7.0
80				300	270	30	70	55	15

Apparent first order kinetic constants estimated for solvolysis of 1-halogeno-2-amine adamantanes to the main product at 50 °C are within the range: $k_1 = (130\pm20)\times10^{-5} \text{ s}^{-1}$ for X = I; $k_1 = (125\pm20)\times10^{-5} \text{ s}^{-1}$ for X = Br; and $k_1 = (3\pm0.2)\times10^{-5} \text{ s}^{-1}$ for X = Cl.

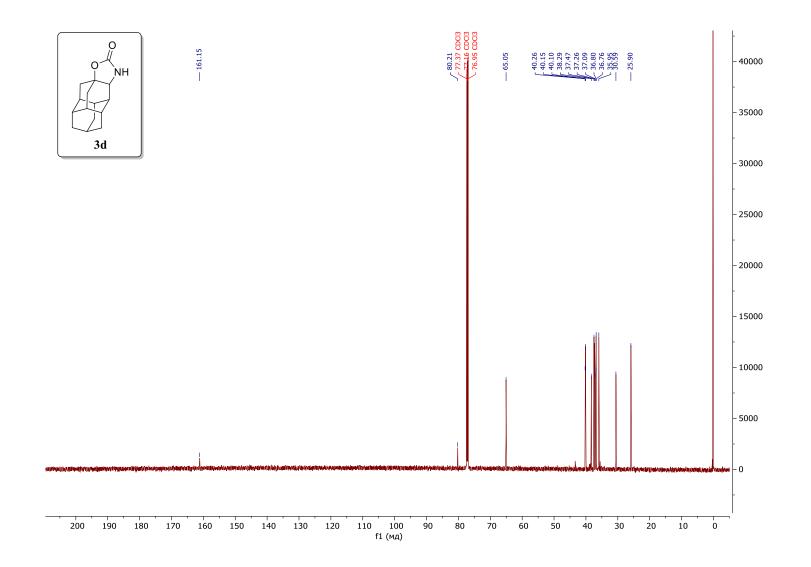

4. NMR spectra of compounds **3-26**

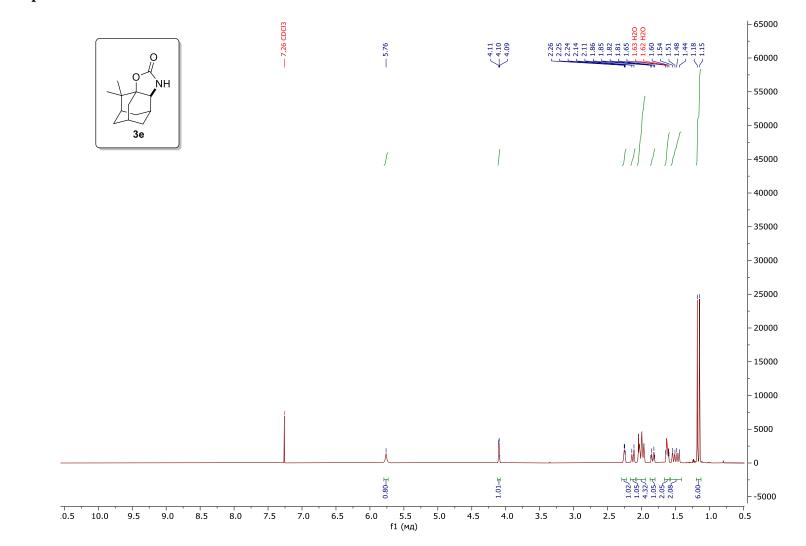

Compound 3a

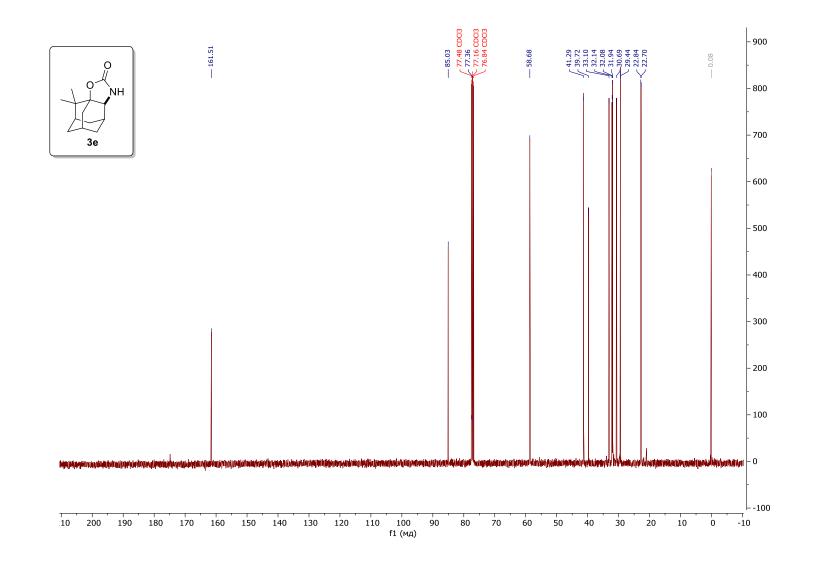


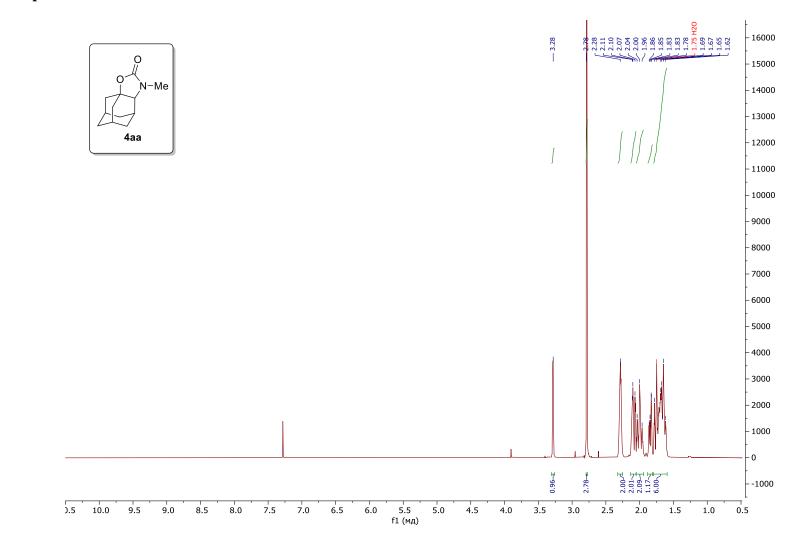

Compound 3b

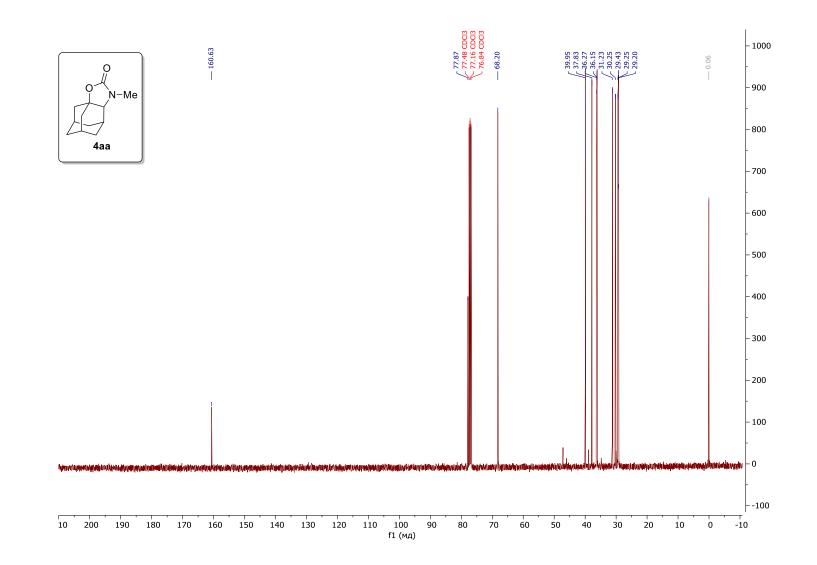


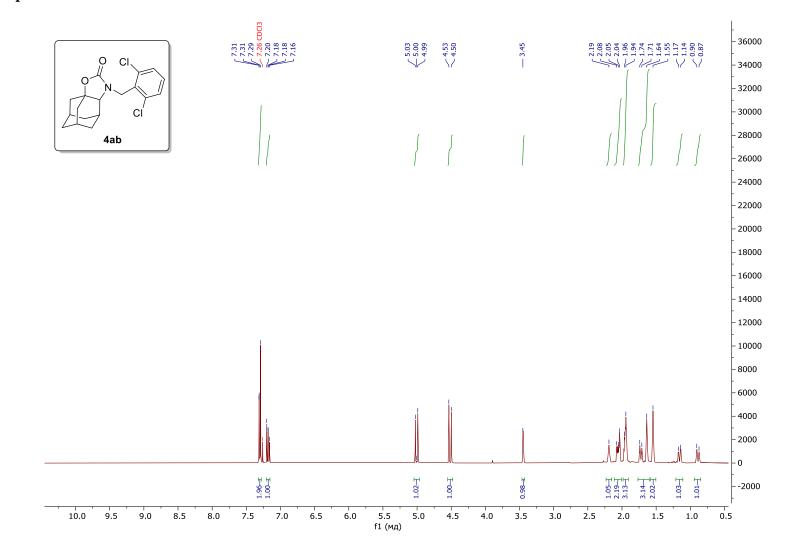

Compound 3c

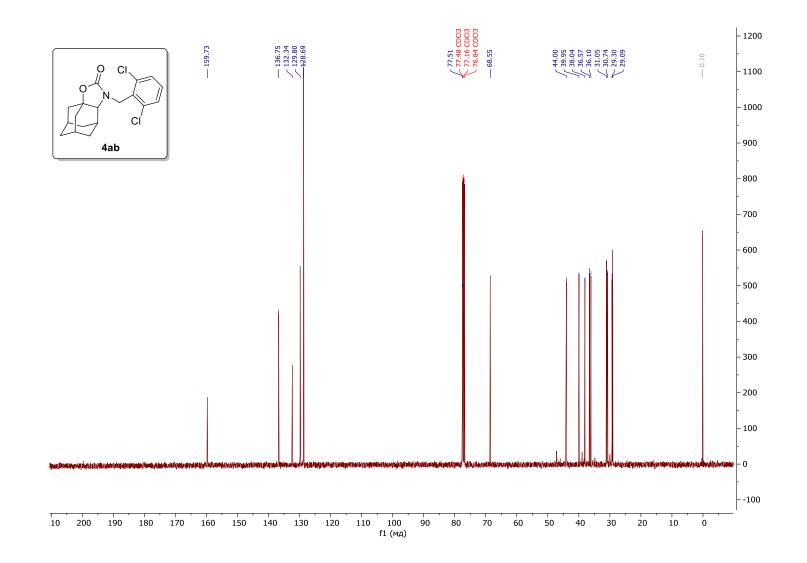



Compound 3d

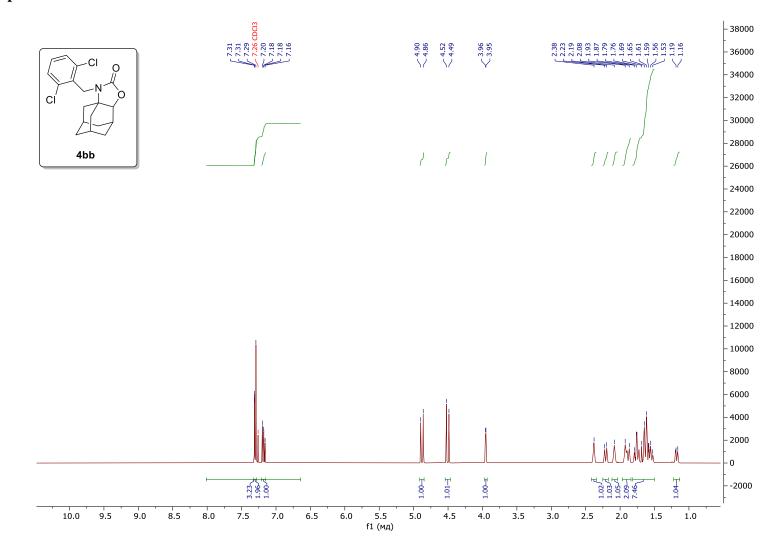


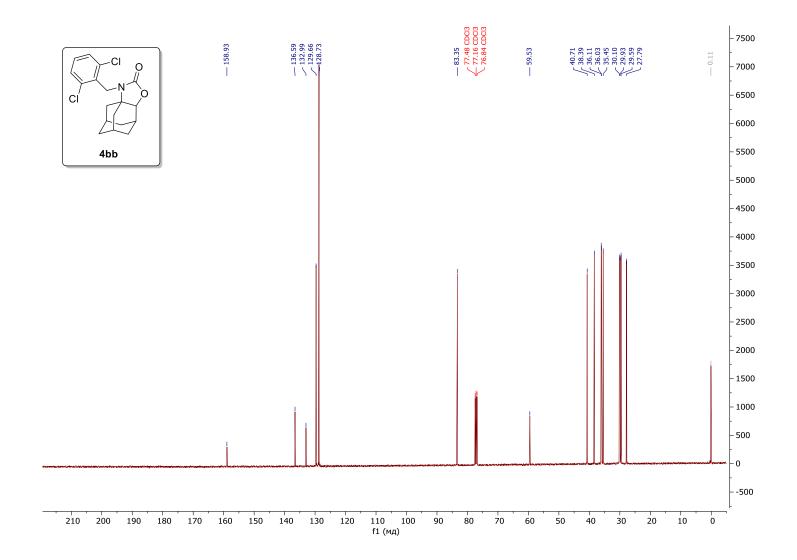

Compound 3e

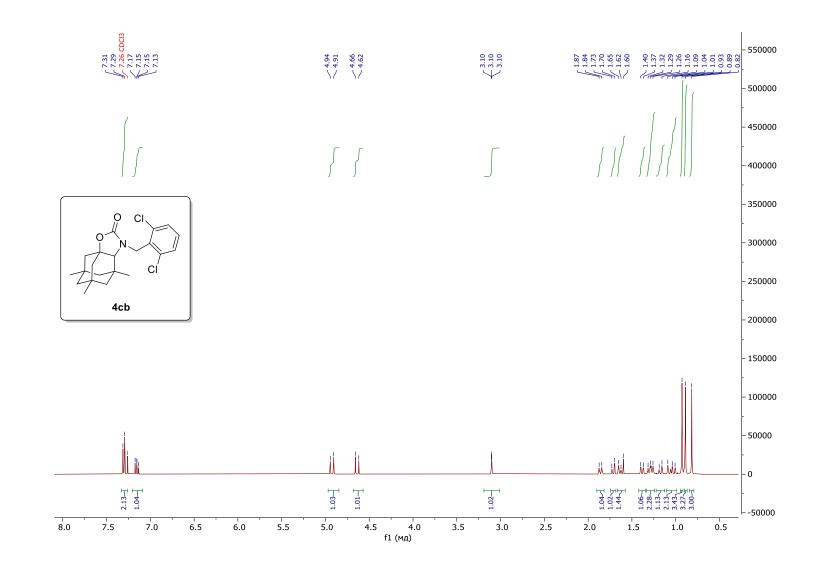


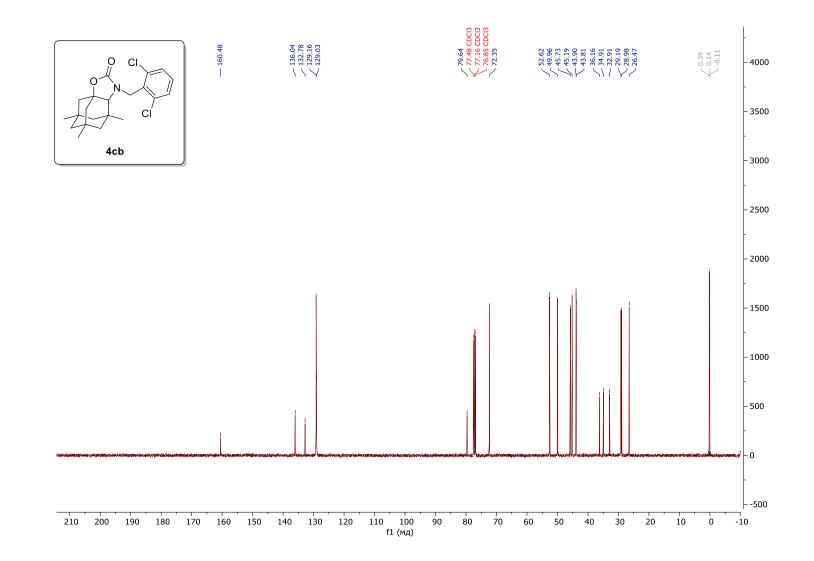


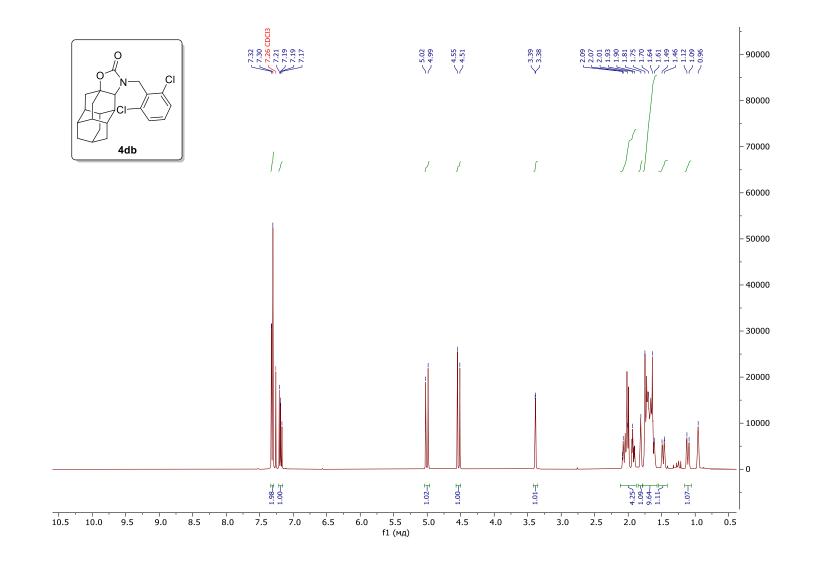
Compound 4aa

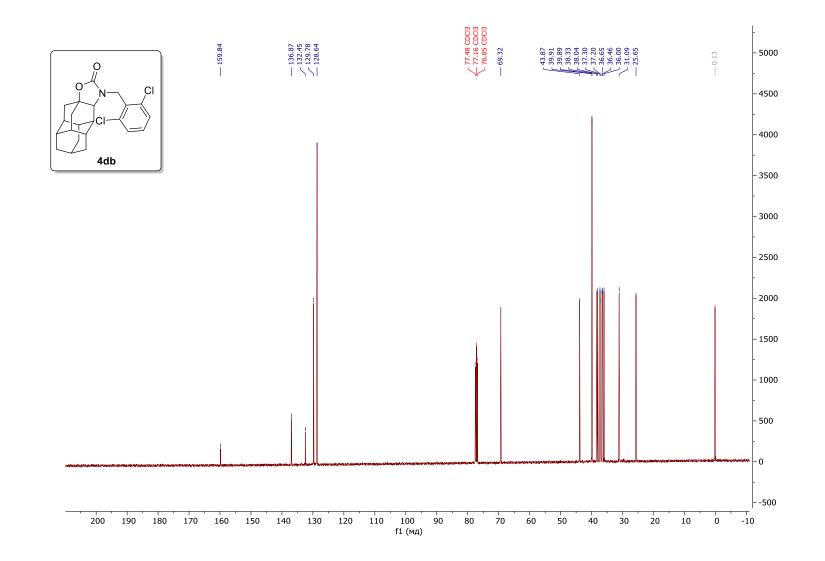


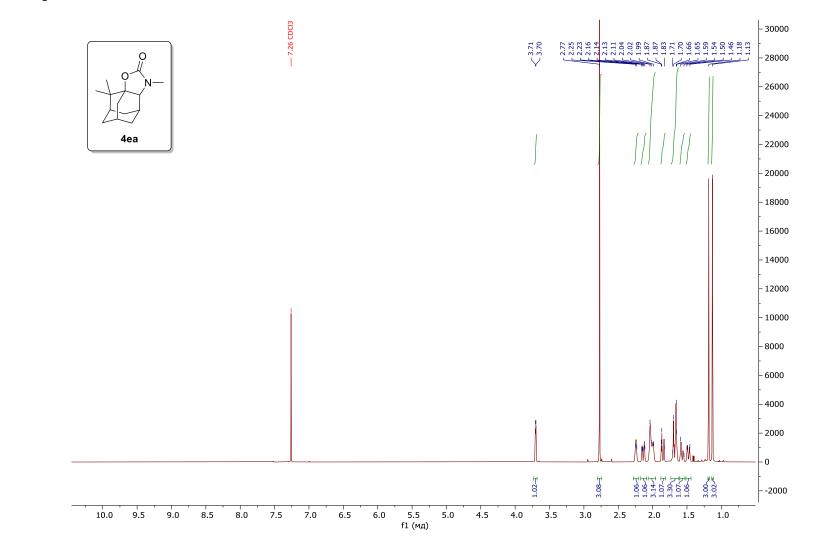

Compound 4ab

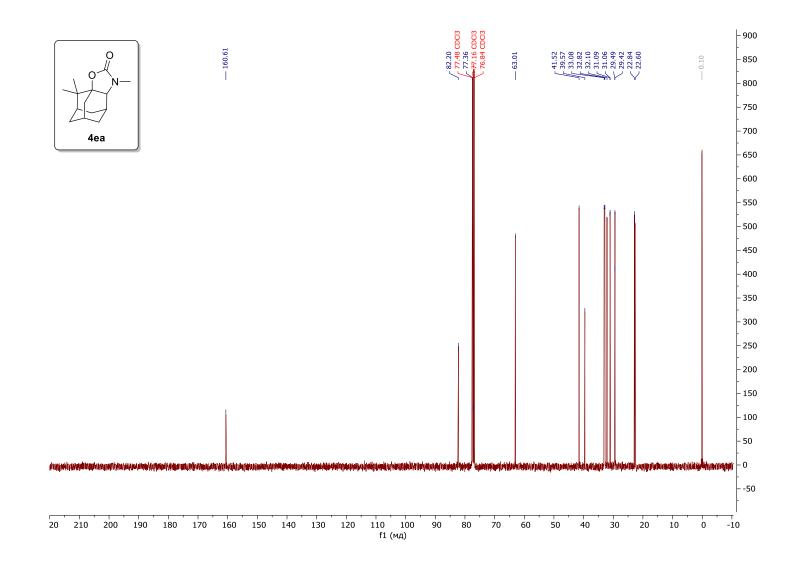


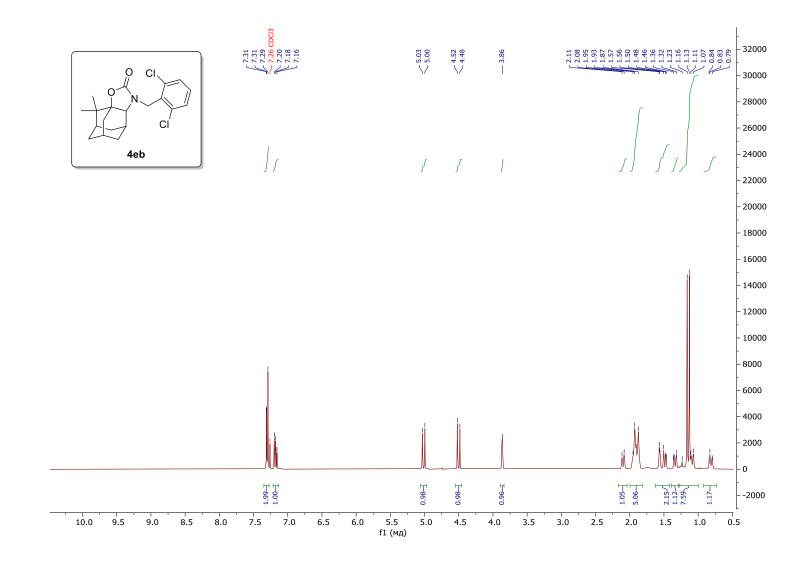

Compound 4bb

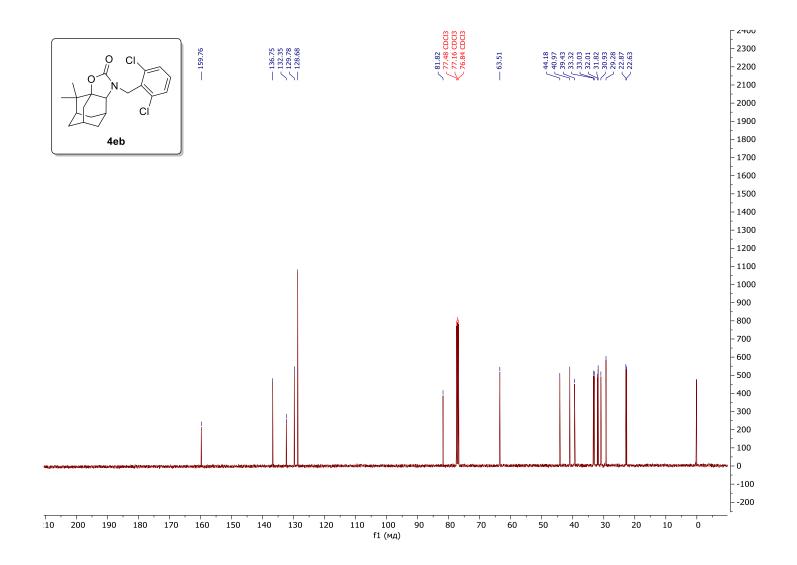


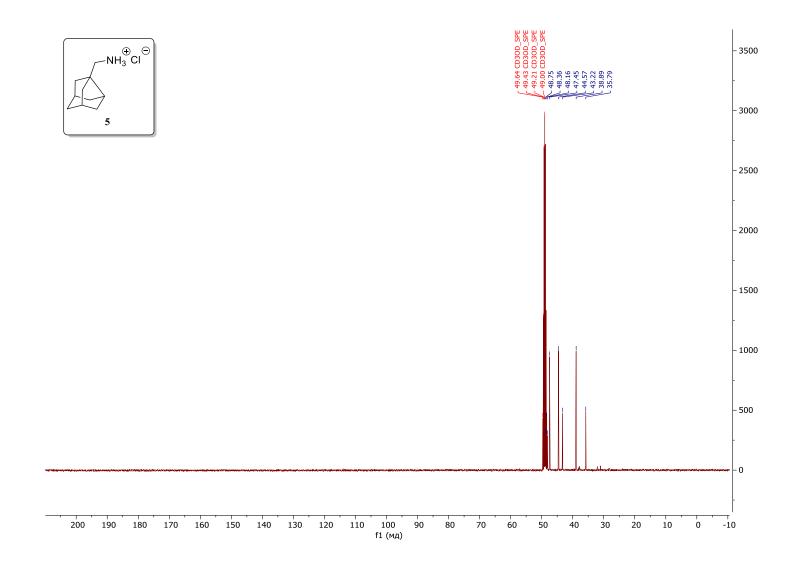

Compound 4cb

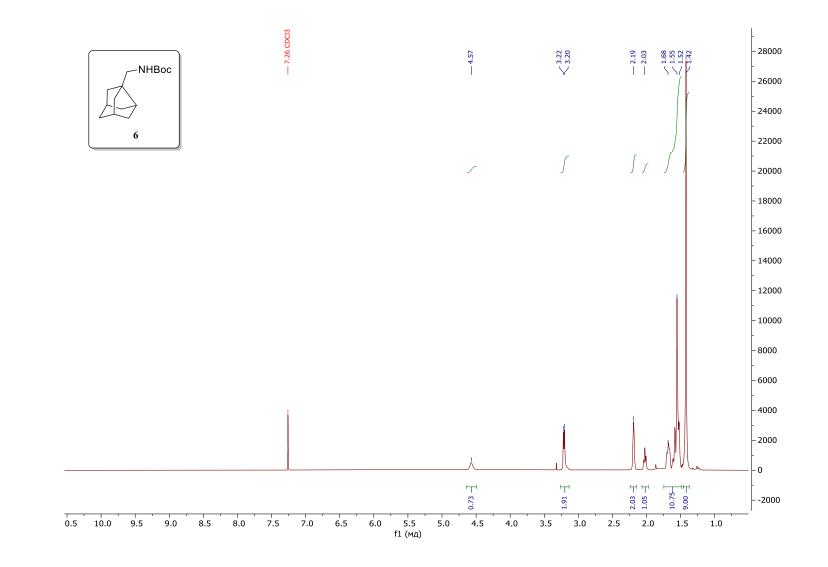


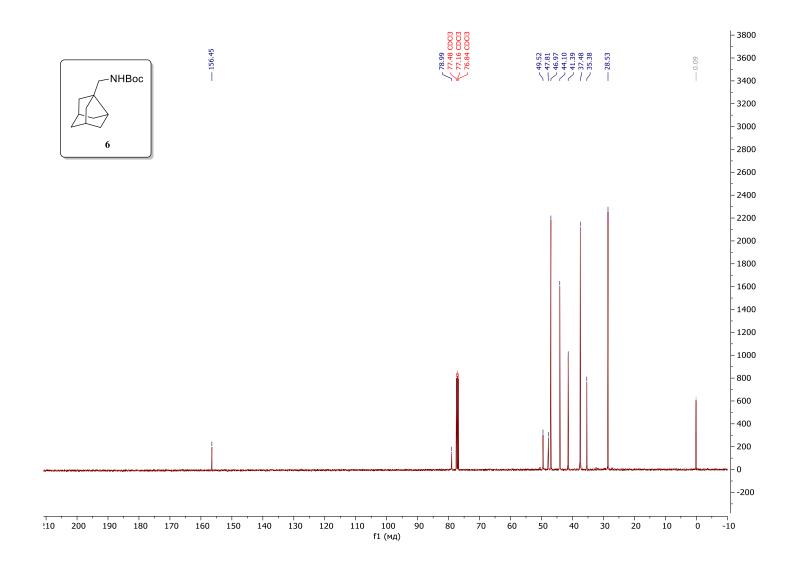

Compound 4db

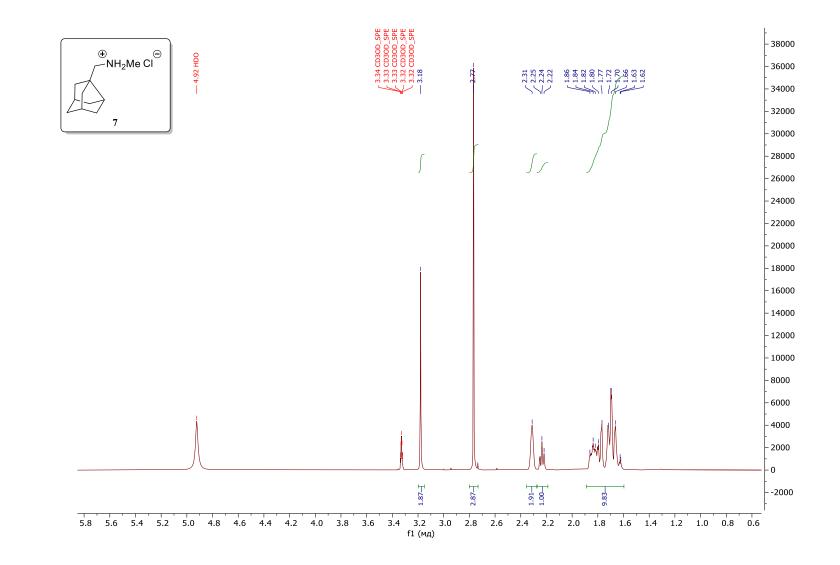


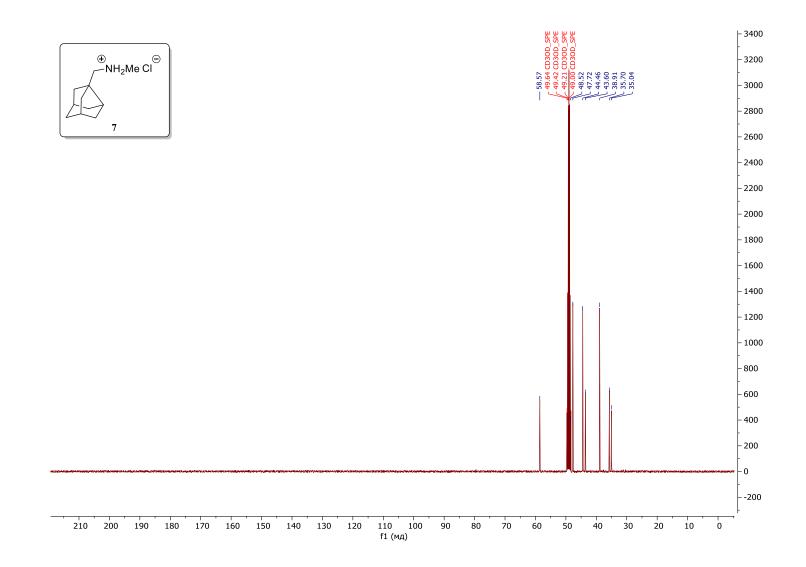

Compound 4ea

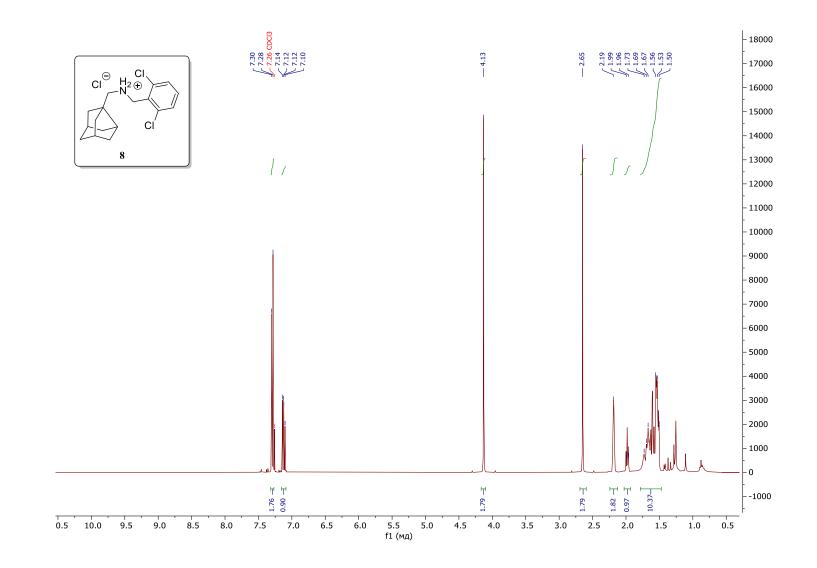


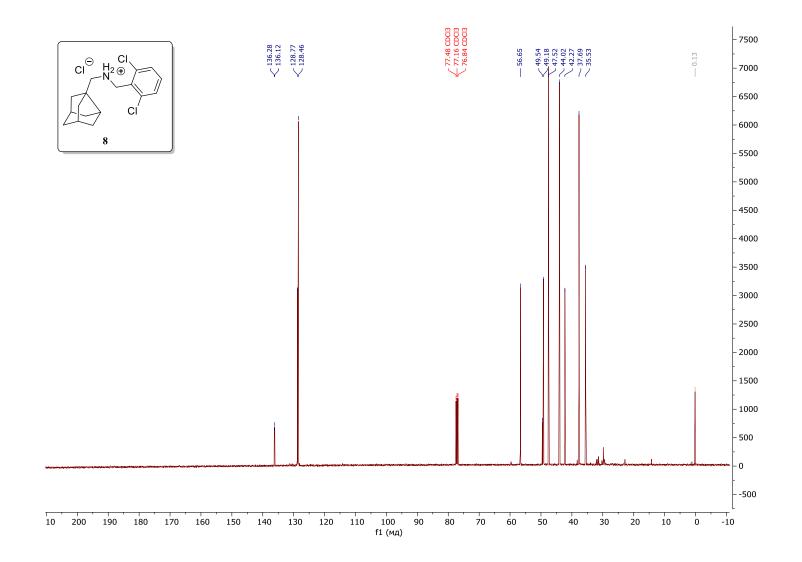

S100

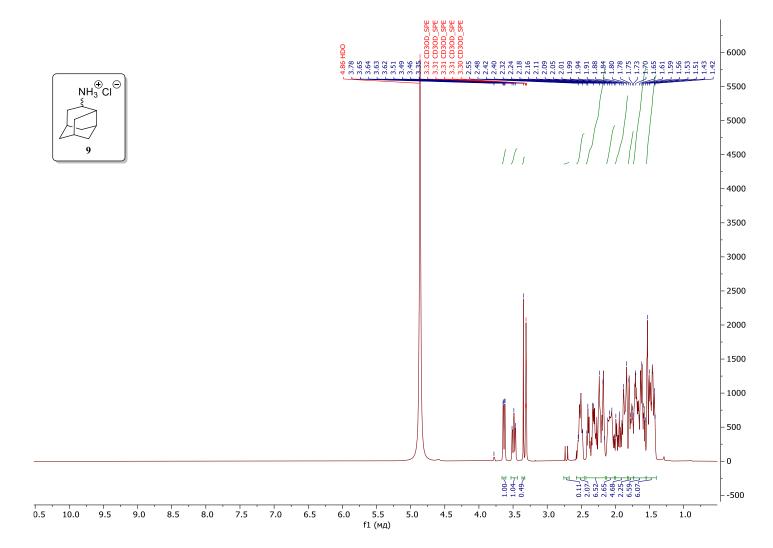

Compound 5

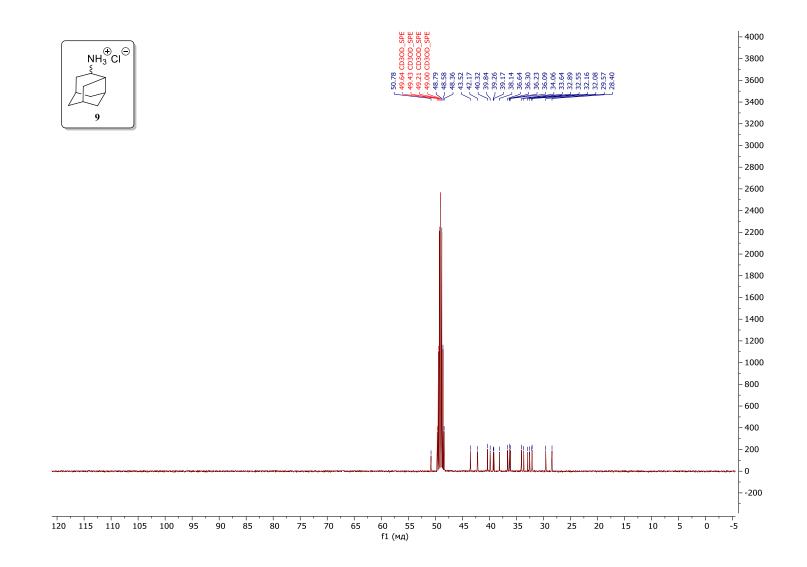


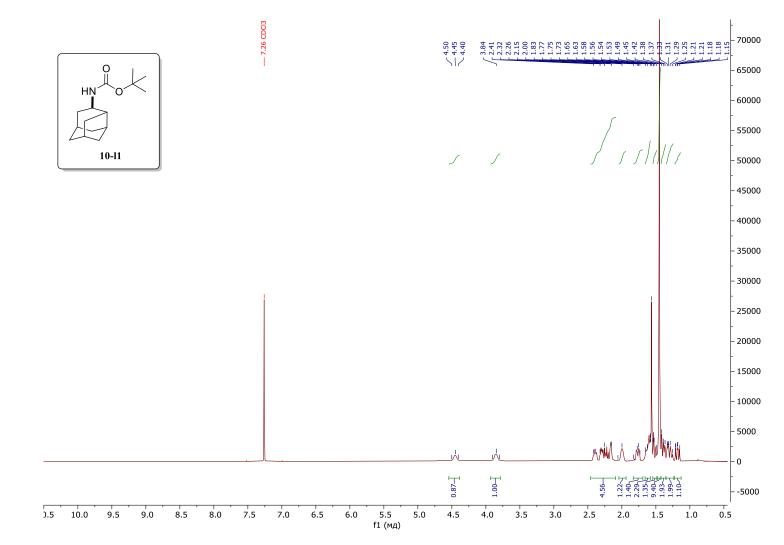

Compound 6

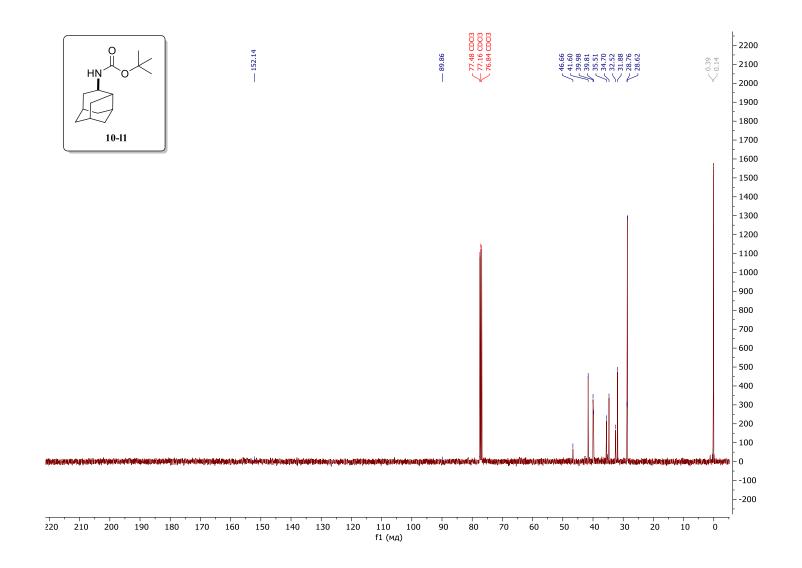


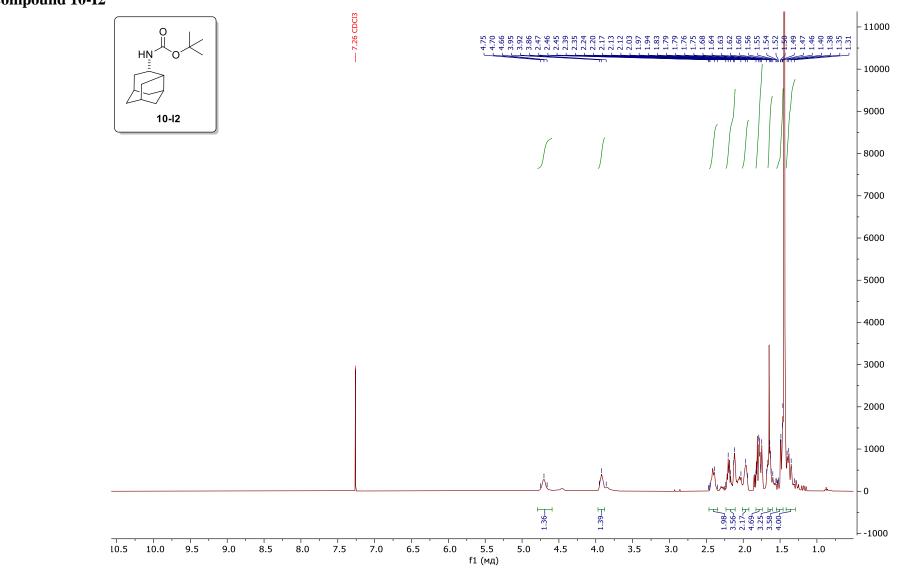

Compound 7



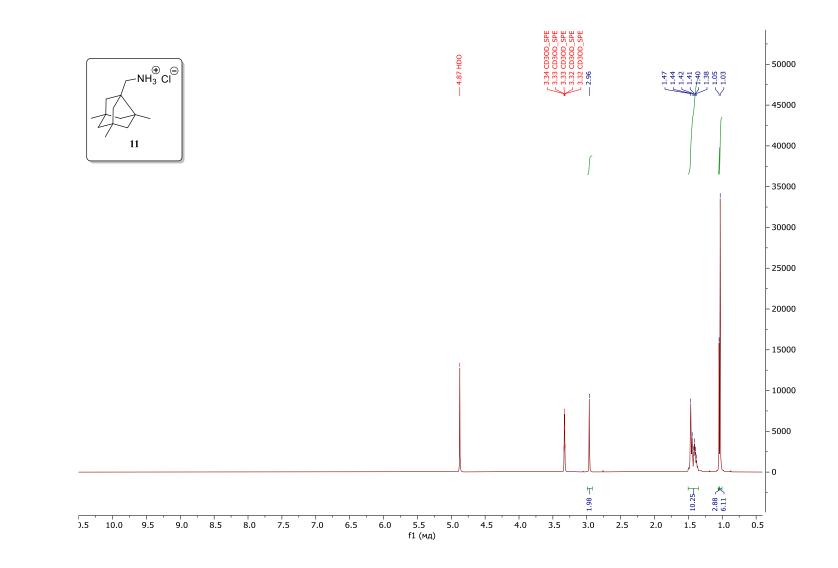

Compound 8

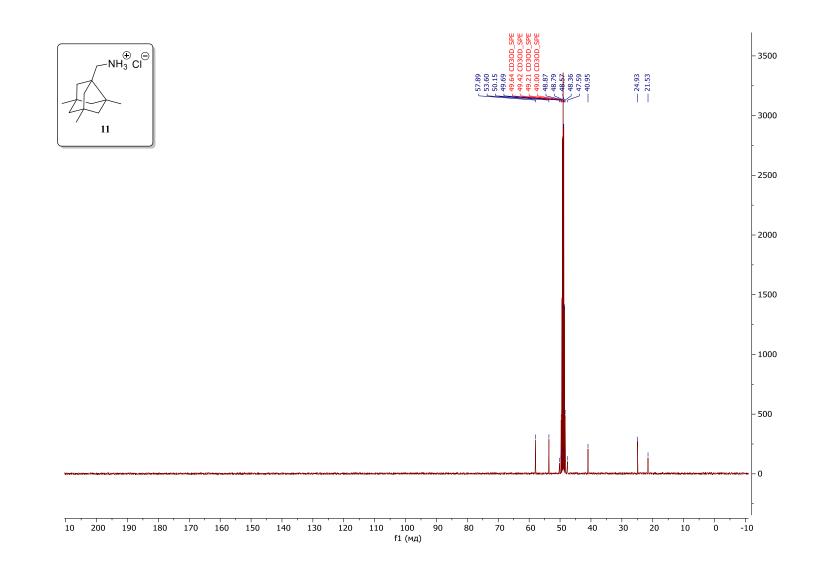


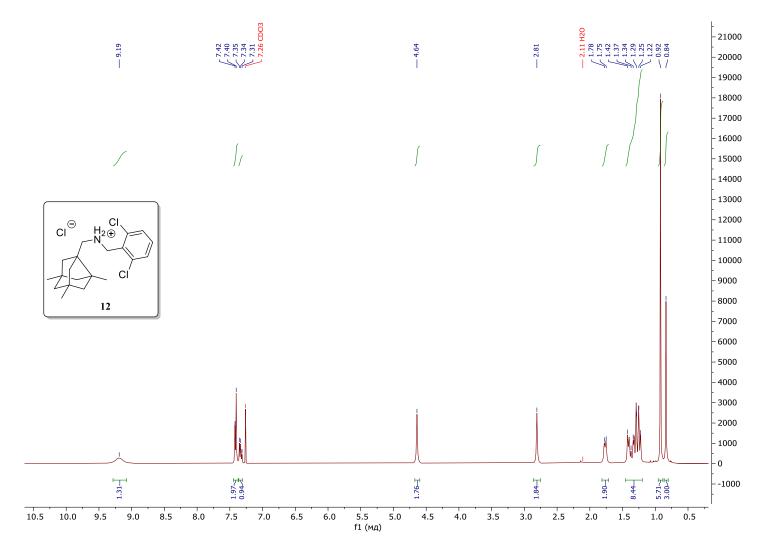

Compound 9 (both isomers)

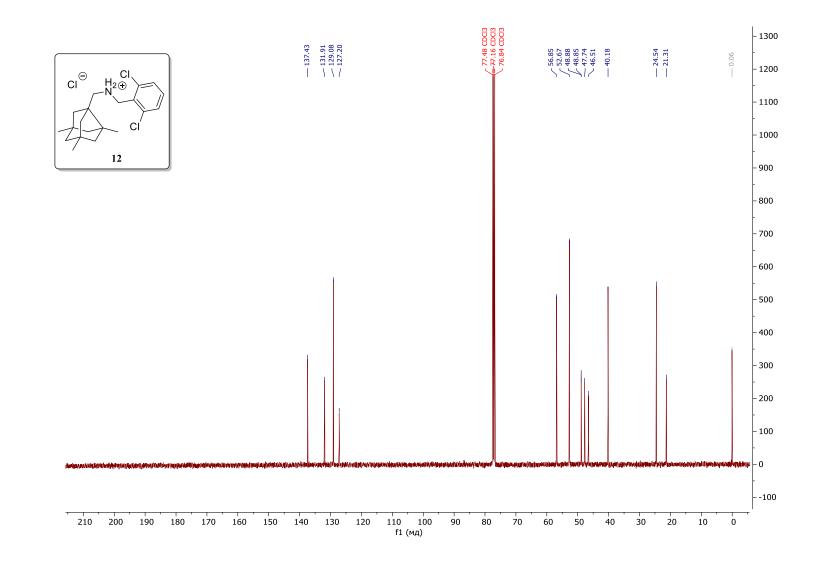


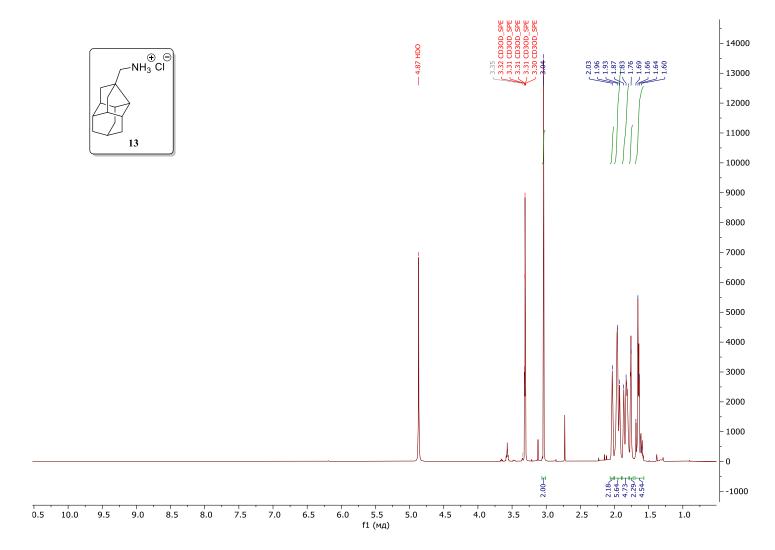

Compound 10-l1

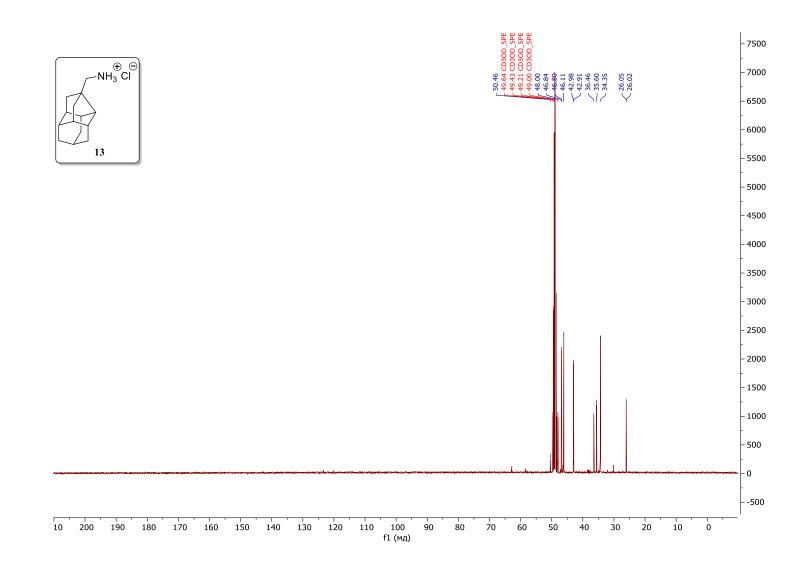




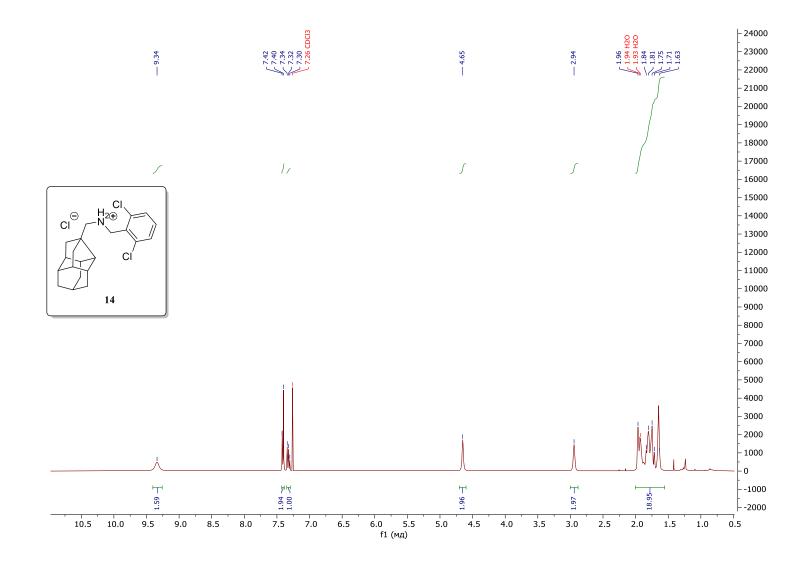

Compound 10-I2

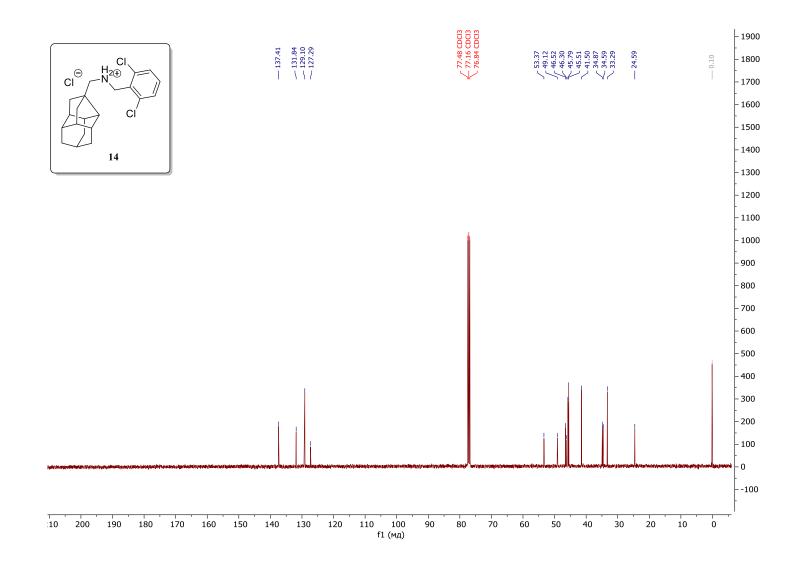


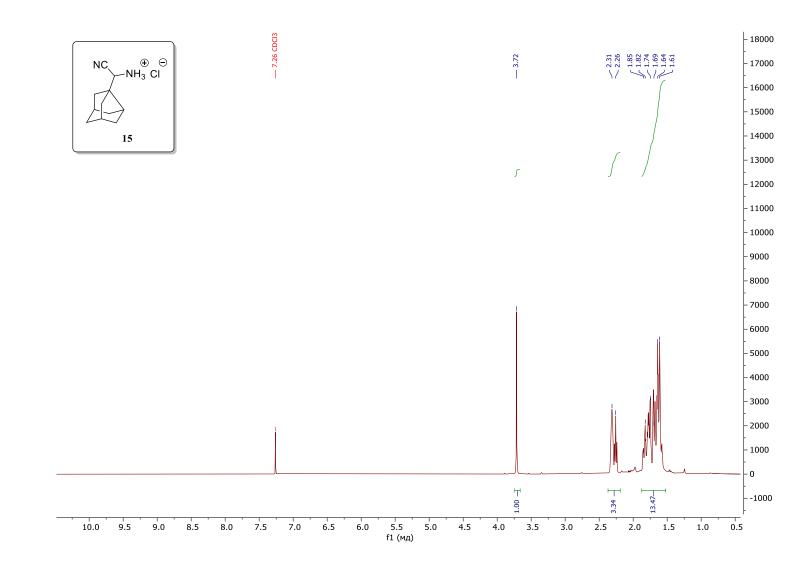


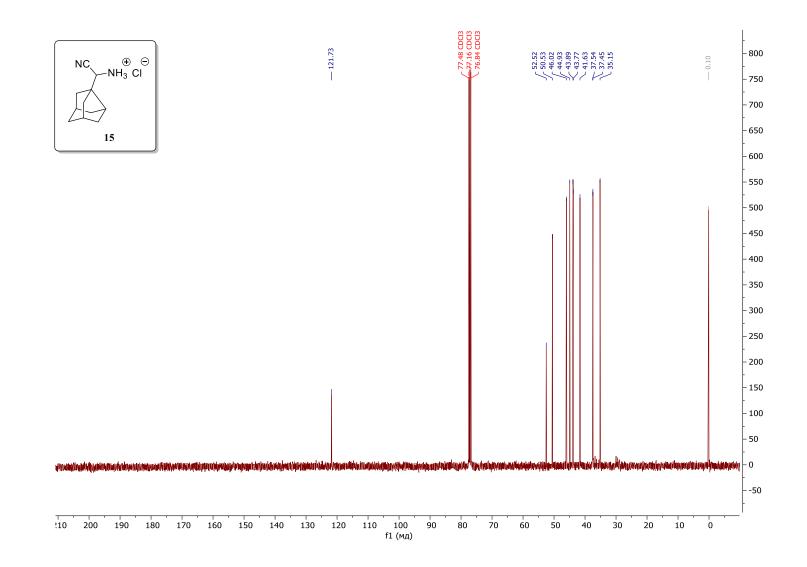


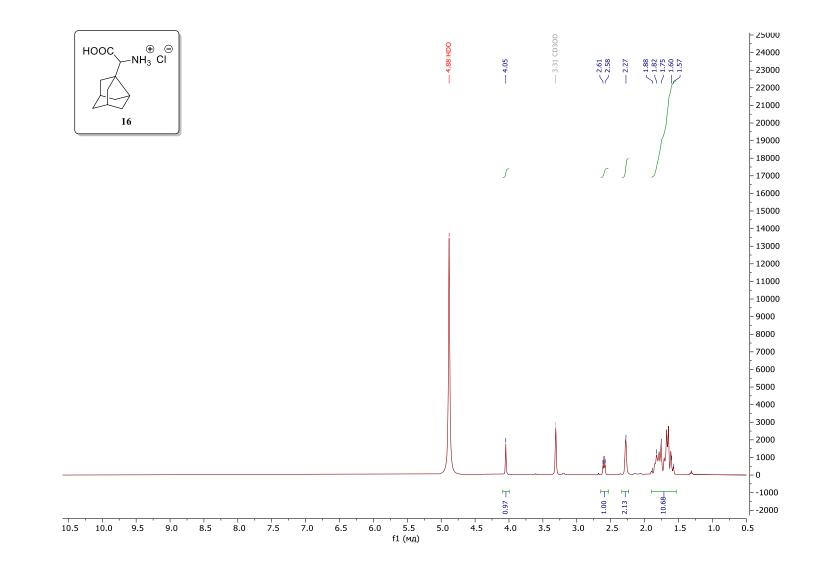
Compound 12

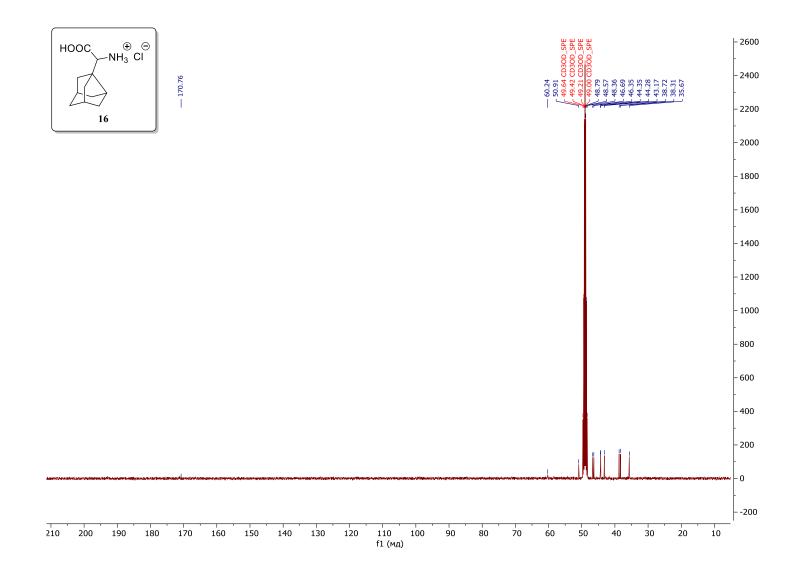


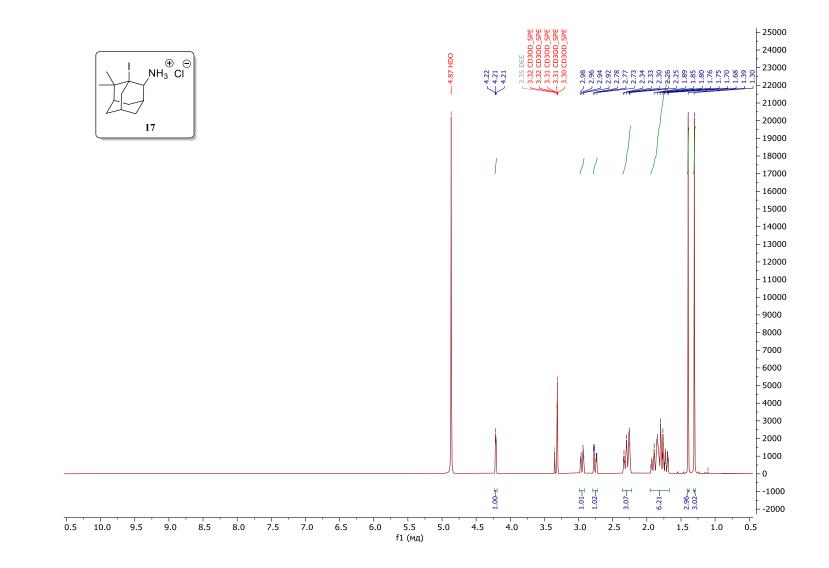


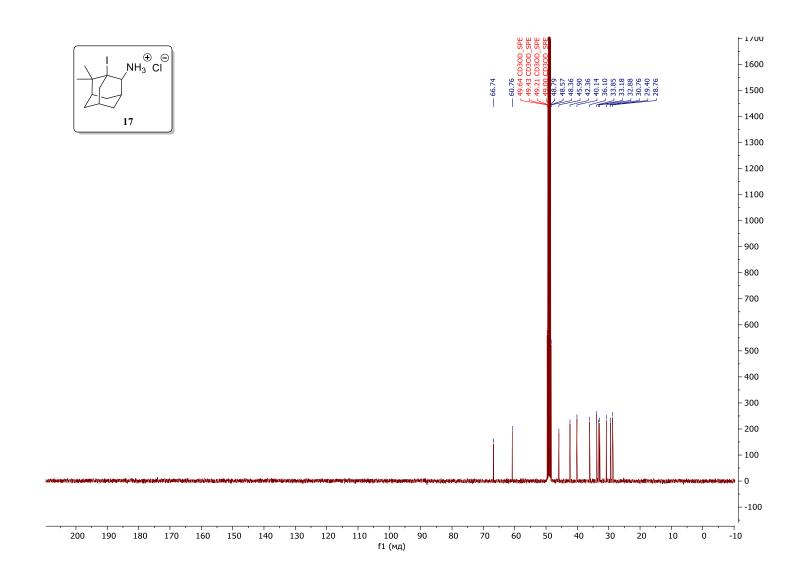


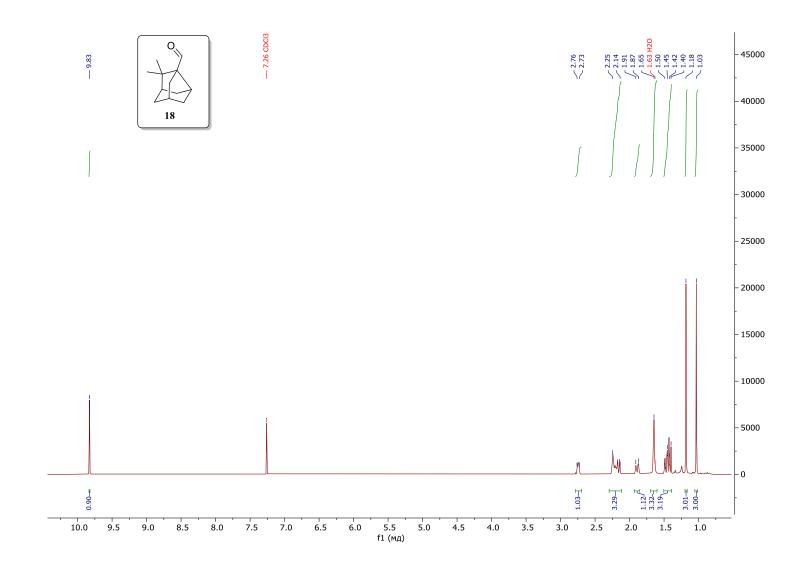


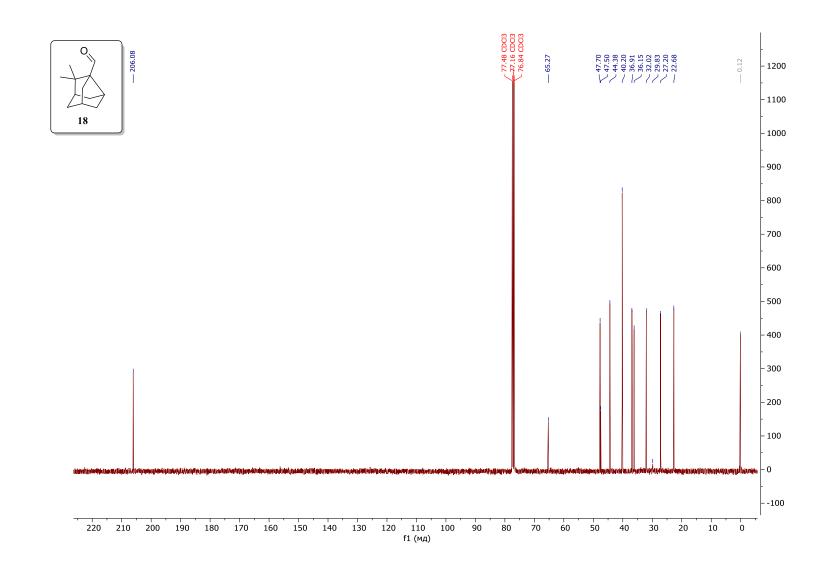

Compound 14

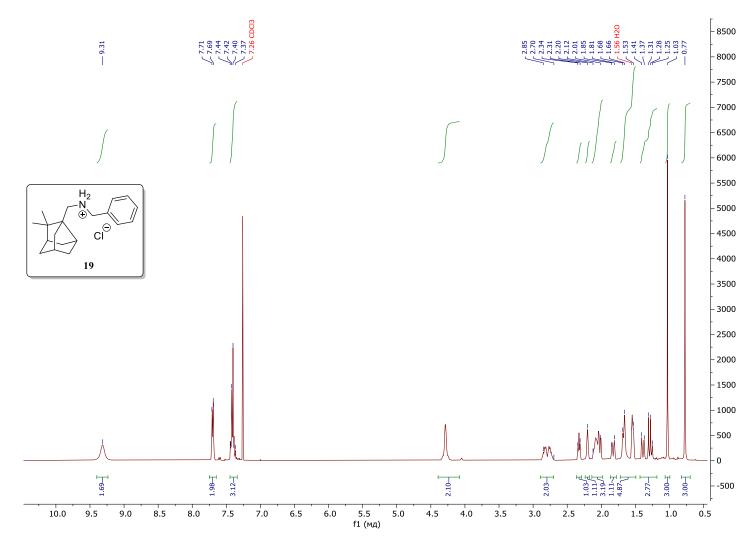


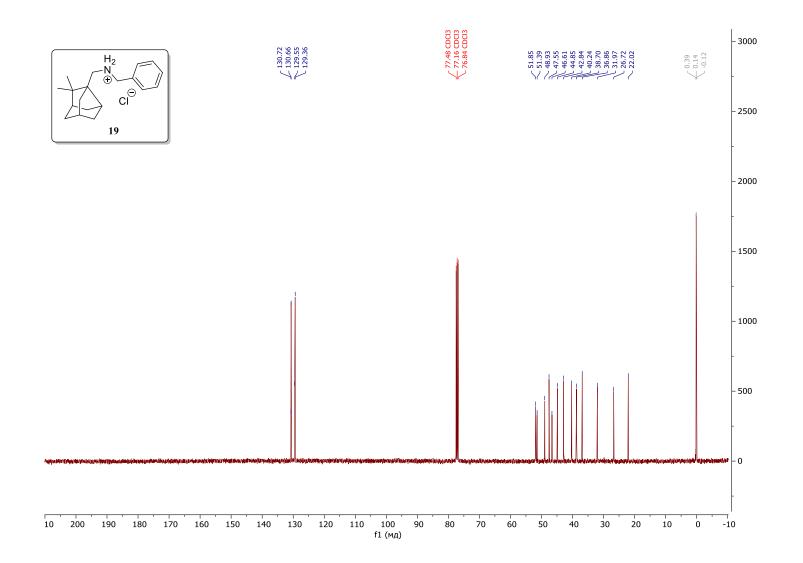


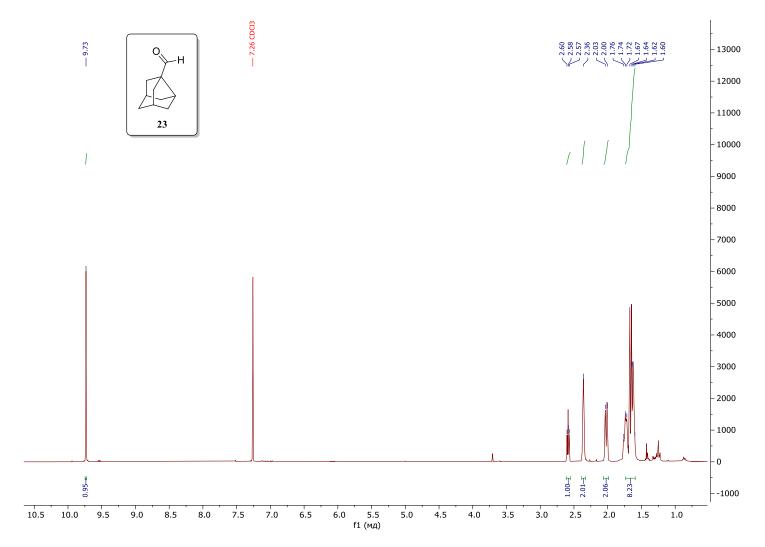


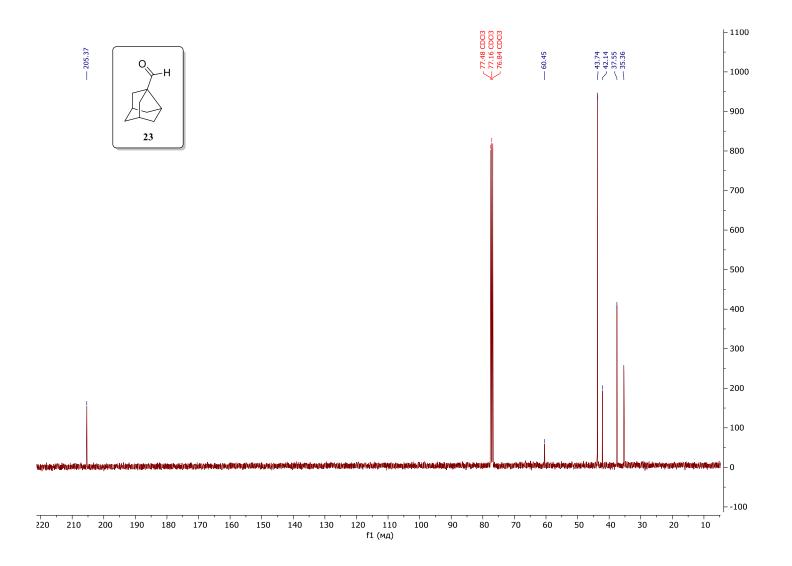


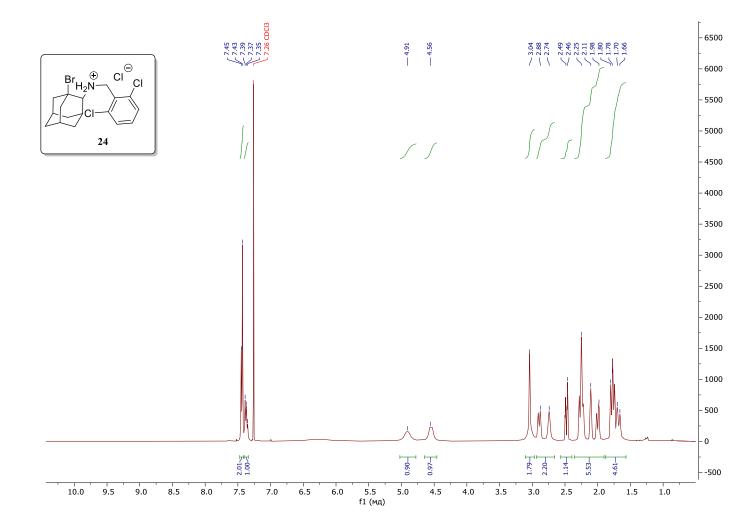


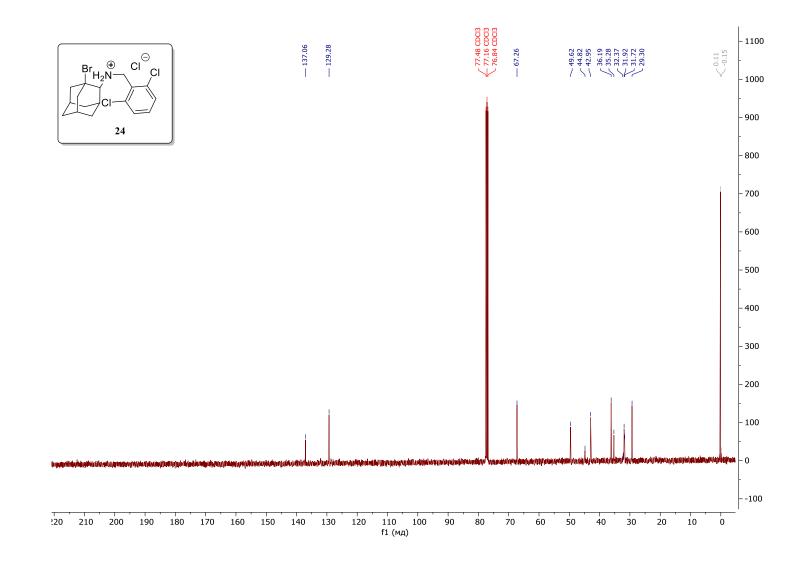


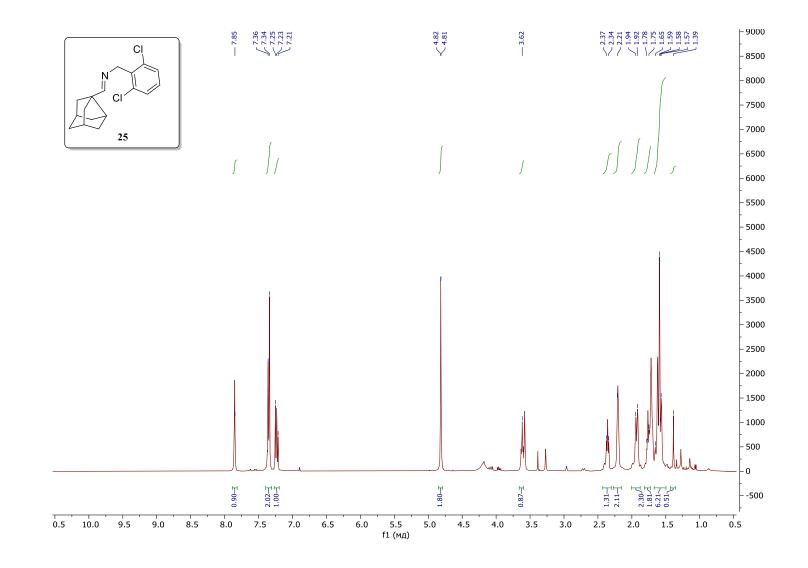


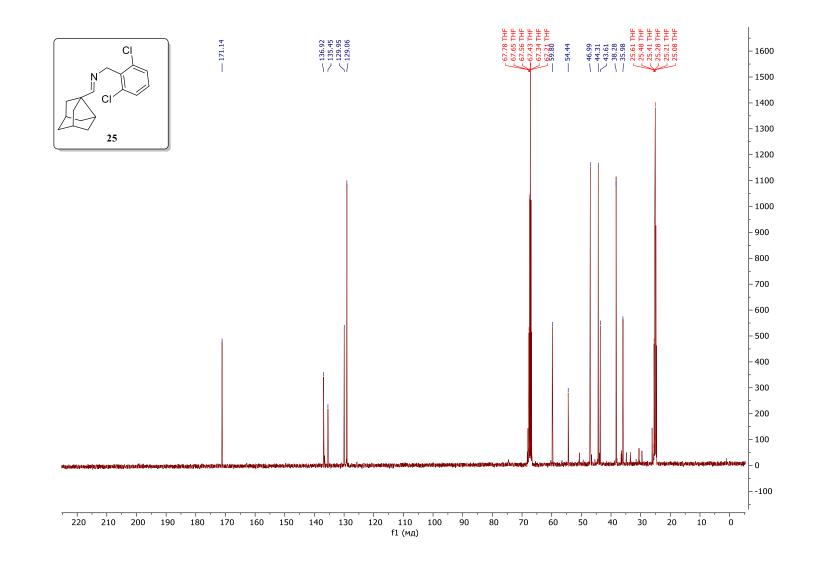












5. DFT analyses

Geometric Structures and Electronic energies (Hartree)

IntA⁺

⊕ _NH₂ (IntA⁺)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Zero-point correction=	0.247133 (Hartree/Particle)
Thermal correction to Energy=	0.255753
Thermal correction to Enthalpy=	0.256697
Thermal correction to Gibbs Free Ene	rgy= 0.214776
Sum of electronic and zero-point Ener	gies= -445.100782
Sum of electronic and thermal Energie	es= -445.092162
Sum of electronic and thermal Enthalp	bies= -445.091218
Sum of electronic and thermal Free Er	nergies= -445.133139

Charge = 1 Multiplicity = 1

6	-1.391571000	-0.643739000	-0.368024000
1	-1.490529000	-1.661280000	-0.757837000
6	-0.392324000	0.118170000	-1.120040000
6	-0.534880000	-0.776452000	1.019077000
1	-1.191250000	-1.340963000	1.683494000
6	0.759789000	-1.538576000	0.735696000
1	0.548995000	-2.539163000	0.355486000
1	1.309864000	-1.672441000	1.669059000

0.764580000	-0.609641000	-1.621924000
1.350241000	-0.048576000	-2.345474000
0.533940000	-1.602952000	-1.997781000
1.615225000	-0.750017000	-0.258386000
2.525659000	-1.286204000	-0.523150000
1.915058000	0.659756000	0.254308000
2.507881000	0.596704000	1.169482000
2.517972000	1.213536000	-0.466846000
-0.240693000	1.528370000	-0.843786000
-1.169678000	2.043721000	-0.626525000
0.373842000	2.061505000	-1.563248000
-0.253066000	0.628667000	1.554207000
-1.179606000	1.162375000	1.754637000
0.280495000	0.548743000	2.503904000
0.607711000	1.394046000	0.550723000
0.780912000	2.422741000	0.864219000
-2.630853000	0.051269000	-0.116647000
-3.159360000	-0.391744000	0.624482000
-3.222377000	0.071615000	-0.938483000
	1.350241000 0.533940000 1.615225000 2.525659000 1.915058000 2.507881000 2.517972000 -0.240693000 -0.240693000 0.373842000 0.373842000 -0.253066000 0.280495000 0.280495000 0.607711000 0.780912000 -2.630853000 -3.159360000	1.350241000-0.0485760000.533940000-1.6029520001.615225000-0.7500170002.525659000-1.2862040001.9150580000.6597560002.5078810000.5967040002.5179720001.213536000-0.2406930001.528370000-1.1696780002.0437210000.3738420002.061505000-0.2530660000.628667000-1.1796060001.1623750000.2804950000.5487430000.6077110001.3940460000.7809120002.422741000-2.630853000-0.391744000

Int1⁺

(Int1⁺)

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Zero-point correction=

0.248560 (Hartree/Particle)

Thermal correction to Energy=	0.257231
Thermal correction to Enthalpy=	0.258176
Thermal correction to Gibbs Free Energy=	0.214975
Sum of electronic and zero-point Energies	-445.125833
Sum of electronic and thermal Energies=	-445.117161
Sum of electronic and thermal Enthalpies=	-445.116217
Sum of electronic and thermal Free Energi	ies= -445.159418

Charge = 1 Multiplicity = 1

6	-0.029621000	1.252576000	-1.017267000
1	-0.594320000	2.166201000	-0.826598000
1	0.061286000	1.120741000	-2.093887000
6	-0.695000000	-0.000009000	-0.329523000
6	1.302452000	1.279519000	-0.255140000
1	1.881838000	2.172337000	-0.487205000
6	0.785019000	1.247859000	1.190313000
1	0.225373000	2.157220000	1.416413000
1	1.570477000	1.150329000	1.937597000
6	-0.120611000	0.000005000	1.150889000
1	-0.870823000	0.000005000	1.943840000
6	0.785032000	-1.247841000	1.190329000
1	1.570489000	-1.150292000	1.937612000
1	0.225396000	-2.157204000	1.416441000
6	-0.029608000	-1.252594000	-1.017251000
1	0.061298000	-1.120772000	-2.093872000

1	-0.594298000	-2.166223000	-0.826570000
6	2.116329000	0.000005000	-0.561669000
1	2.424851000	0.000000000	-1.609111000
1	3.030535000	0.000014000	0.034012000
6	1.302465000	-1.279514000	-0.255123000
1	1.881861000	-2.172328000	-0.487176000
6	-2.129598000	-0.000014000	-0.549057000
1	-2.493923000	-0.000032000	-1.573646000
7	-3.040359000	0.000004000	0.364428000
1	-2.792480000	0.000020000	1.346982000
1	-4.026201000	0.000001000	0.135169000

TS

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Zero-point correction=	0.246238 (Hartree/Particle)	
Thermal correction to Energy=	0.254558	
Thermal correction to Enthalpy=	0.255502	
Thermal correction to Gibbs Free Ener	rgy= 0.214064	
Sum of electronic and zero-point Ener	gies= -445.099699	
Sum of electronic and thermal Energie	es= -445.091380	
Sum of electronic and thermal Enthalpies= -445.090435		
Sum of electronic and thermal Free Energies= -445.131873		
Charge = 1 Multiplicity = 1		
6 1 407053000 0 677023000	0.280466000	

 $6 \quad -1.497953000 \quad -0.677923000 \quad -0.289466000$

1	-1.594207000	-1.752258000	-0.435512000
6	-0.477408000	-0.063960000	-1.068010000
6	-0.436716000	-0.594761000	1.143224000
1	-1.133044000	-1.049417000	1.845911000
6	0.818000000	-1.417697000	0.922443000
1	0.577398000	-2.460769000	0.711567000
1	1.399948000	-1.416282000	1.847420000
6	0.680208000	-0.871233000	-1.489497000
1	1.187203000	-0.428943000	-2.344810000
1	0.428510000	-1.905863000	-1.708903000
6	1.626335000	-0.798413000	-0.218463000
1	2.528898000	-1.368730000	-0.433607000
6	1.952731000	0.673514000	0.068123000
1	2.592778000	0.742329000	0.949795000
1	2.519768000	1.104682000	-0.758438000
6	-0.257523000	1.384535000	-0.997013000
1	-1.156953000	1.972785000	-0.844563000
1	0.300767000	1.762502000	-1.850160000
6	-0.154780000	0.863667000	1.449125000
1	-1.083712000	1.409427000	1.603602000
1	0.404478000	0.916408000	2.386651000
6	0.664807000	1.470971000	0.310161000
1	0.878940000	2.525405000	0.479991000
7	-2.696220000	0.019688000	-0.004161000
1	-3.425116000	-0.572439000	0.364537000
1	-3.058320000	0.571153000	-0.768119000

6. Crystallographic data collection and refinement details

The X-ray experimental data for **7** (73b-200) and **10I1** (rh82) were acquired on Bruker D8 VENTURE Kappa Duo PHOTON III by I μ S micro-focus sealed tube either with MoK α ($\lambda = 0.71073$ Å) for 7 or CuK α ($\lambda = 1.54178$ Å) for 10i1 radiation at a low temperature. The structures were solved by direct methods (XT39a)^{39a} and refined by full matrix least squares based on F2 (SHELXL201839b).^{39b} The hydrogen atoms on carbon were fixed into idealized positions (riding model) and assigned temperature factors either Hiso(H) = 1.2 Ueq(pivot atom) or Hiso(H) = 1.5 Ueq (pivot atom) for methyl moiety. The hydrogens on N and O atoms were found on difference Fourier maps and refined under rigid-body assumption.

Crystal data for 7: C11H20N·Cl·H2O, Mr = 219.74, Monoclinic, P21/c (No 14), a = 16.6281 (13) Å, b = 6.4734 (4) Å, c = 11.5542 (9) Å, $\beta = 103.171$ (3)°, V = 1210.98 (15) Å3, Z = 4, Dx = 1.205 Mg m-3, colourles plate of dimensions $0.50 \times 0.44 \times 0.04$ mm, temperature of the crystal 200K, multi-scan absorption correction ($\mu = 0.29$ mm-1) Tmin = 0.88, Tmax = 0.99; a total of 10958 measured reflections (θ max= 27.5°), from which 2773 were unique (Rint = 0.029) and 2180 observed according to the I > 2 σ (I) criterion. The refinement converged (Δ/σ max ≤ 0.001) to R = 0.045 for observed reflections and wR(F2) = 0.123, GOF = 1.04 for 128 parameters and all 2773 reflections. The final difference map displayed no peaks of chemical significance ($\Delta\rho$ max = 0.46, $\Delta\rho$ min -0.39 e.Å-3).

The temperature of 200K was chosen for the measurement due to phase transition of the structure at lower temperature. At 120K the crystal exhibits splitting of diffractions accompany with change of lattice symmetry to triclinic one. The structure was solved in P -1 space group with two symmetrically independent molecules in the unit cell. Except smaller displacement parameters, all other geometric parameters (intra- and inter- atomic distances and angles) compares well with high temperature phase, therefore the structure at 120K was included only in the form of cif-file deposited into CSD with ccdc number 2194852.

Crystal data for **10I1**: C15H25NO2, Mr = 251.36, Monoclinic, P21/c (No 14), a = 12.2381 (5) Å, b = 11.7529 (6) Å, c = 10.0683 (4) Å, V = 1398.00 (11) Å3 , Z = 4, Dx = 1.194 Mg m-3, colourles needle of dimensions $0.28 \times 0.05 \times 0.04$ mm, temperature of the sample 120K, multiscan absorption correction (μ = 0.61 mm-1) Tmin = 0.85, Tmax = 0.97; a total of 31666 measured reflections (θ max= 66.6°), from which 4600 were unique (Rint = 0.034) and 3745 observed according to the I > 2 σ (I) criterion. The refinement converged (Δ/σ max \leq 0.004) to R = 0.046 for observed reflections and wR(F2) = 0.109, GOF = 1.05 for 267 parameters and all 4600 reflections. The final difference map displayed no peaks of chemical significance (Δ pmax = 0.29, Δ pmin -0.21 e.Å-3). The measured crystal was refined as non-merohedral twin with the domains ration 0.67:0.33.The influence of real structure of the crystal of 10i1 on diffraction

pattern is not expressed only by twinning but also by disorder by major part of the molecule of 10i1. However the second position is occupied only by 12% of molecules suggesting the idea, that the driving force of disorder is rather the entrophy instead equality of minima of energy for both orientations.

X-ray crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2194850 and 2194851 for 7 and 10i1, respectively and can be obtained free of charge from the Centre via its website (www.ccdc.cam.ac.uk/getstructures).

References:

^{39a} SHELXT: Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

³⁹ SHELXL: Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

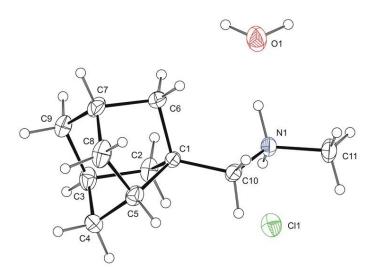


Fig.1 View on the molecule of **7** with atom numbering schema. The displacement ellipsoids are drawn on 30% probability level.

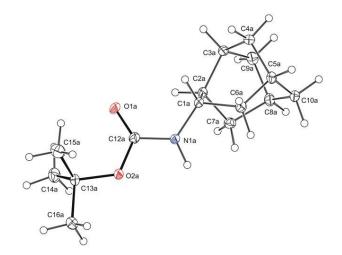


Fig.2 View on the molecule of **10I1** with atom numbering schema. The displacement ellipsoids are drawn on 30% probability level. The second positions of disordered atoms are omitted for clarity.