Supporting Information

A broad range and piezoresistive flexible pressure sensor based on carbon nanotube network dip-coated porous elastomer sponge

Yuyang Cai^a, Linpeng Liu^a*, Xiancun Meng^b, Jingxiang Wang^b, Changchao Zhang^b, Jianhao Li^b, Zhilai Lu^a, Ji-an Duan^a

^a The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China
^b Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

Corresponding Authors

*Linpeng Liu: linpengliu@csu.edu.cn

Fig. S1. The initial resistances (R_0) of the as-prepared 5 sensor samples.

Fig. S2. a) SEM images of the surface morphology of the pressure sensor. b) SEM images of the side morphology of the pressure sensor.

Fig. S3. The response of the sensor under an applied pressure with a frequency load of 200 Hz, and FFT result according to the response signals.

Supplementary Tables

Table S1 Comparison of the properties of the sponge-based pressure sensor in the references and that in our work

Materials	Methods	Sensor types	Sensitivity [kPa ⁻¹]	Detection limit [Pa]	Working range [kPa]	Response and recovery time [ms]	Stability	Ref
PET-ITO/PDMS	Physical foaming	Capacitive	0.796	4	25	65	1000	[1]
Melamine foam/MWCNTs/MXene	Soaking	Resistant	0.339	/	180	180/140	1150	[2]
Al/PVC/PDMS	Gas evaporation	Capacitive	0.375	/	230	190	50	[3]
Graphene/PDMS	Sugar dissolving & Dip-coating	Capacitive	0.137	50	12	/	100	[4]
Carbon ink/melamine	Dip-coating	Resistant	0.056	30	31.36	100/100	2000	[5]
Carbon ink/Melamine foam	Dip-coating	Resistant	0.62	/	150	30/55	2500	[6]
MWCNTs/PDMS	Gas evaporation	Capacitive	0.19	/	300	180	35	[7]
AgNW/CF/PDMS	Sugar dissolving	Capacitive	0.161	/	200	/	6000	[8]
MXene/rGO/PDMS	Freeze-drying	Resistant	3.75	1.5	28	20/40	2000	[9]
AgNP/PDMS	NaCl dissolving	Resistant	0.41	25	120	30	1500	[10]
Graphene/styrene-butadiene rubber	Dip-coating	Resistant	1.05	/	150	/	3000	[11]
MXene/PANI	Hydrazine-induced foaming	Resistant	690.91	/	19.12	106/95	10000	[12]
MWCNT/PU	Dip coating	Resistant	0.00125	150	350	401/473	5000	This
								work

References:

- 1 Z. Song, L. Zhao, C. Chang, Y. Zhou, W. An and S. Yu, J. Electron. Mater., 2022, 51, 7173–7181.
- 2 Y. Su, K. Ma, X. Mao, M. Liu and X. Zhang, *Nanomaterials*, 2022, **12**, 2225.
- 3 S. Dervin, E. S. Hosseini and R. Dahiya, *IEEE Sens. J.*, 2021, **22**, 9914–9921.
- 4 L. A. Kurup, C. M. Cole, J. N. Arthur and S. D. Yambern, ACS Appl. Nano Mater., 2022, 5, 2973–2983.
- 5 X. Zhang, J. Li, J. Lin, W. Li, W. Chu and X. Wang, *J. Mater. Sci. Mater. Electron.*, 2022, **33**, 13731–13742.
- C. Liu, Q. Tan, L. Kong, Y. Deng, X. Ma, L. Xu, Y. Xu, W. Zhou, L. Zhong, Q. Qiang, T. Han, W.
 Chen and B. Liu, *Mater. Lett.*, 2023, 330, 133331.
- 7 Z. Yun, K. Li, H. Jiang and X. Tang, Sensors, 2022, 22, 2607.
- 8 S. W. Park, P. S. Das, A. Chhetry and J. Y. Park, *IEEE Sens. J.*, 2017, **17**, 6558–6564.
- 9 J. Gao, Y. Xia, J. Zhao, P. Niu, Y. Fang, J. Shen and R. Xu, *IEEE Sens. J.*, 2022, 22, 18391–18399.
- 10 A. Paghi, M. Corsi, S. Corso, S. Mariani and G. Barillaro, *Nanoscale Horizons*, 2022, 7, 425–436.
- 11 T. Cui, L. Yang, X. Han, J. Xu, Y. Yang and T. Ren, *Materials (Basel).*, 2021, 14, 6475.
- T. Yin, Y. Cheng, Y. Hou, L. Sun, Y. Ma, J. Su, Z. Zhang, N. Liu, L. Li and Y. Gao, *Small*, 2022, 2204806.