Supporting Information

Scalable Slot-die Coated Flexible Supercapacitors from Upcycled PET face shields

R. Kiran Kumar Reddy^a, Andrew Callander^b, Lidija Šiller^c, Karen Faulds^b, Leonard Berlouis^a, and Aruna Ivaturi^{a*}

^aSmart Materials Research and Device Technology (SMaRDT) Group, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, Glasgow, G1 1XL, UK

^bCentre for Molecular Nanometrology, Department of Pure and Applied Chemistry, University of Strathclyde, Technology Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK

^cNewcastle University, School of Engineering, Newcastle upon Tyne, NE1 7RU, UK

Corresponding author: email aruna.ivaturi@strath.ac.uk

Fig. S1 (a) TGA thermogram of face shield (PET) pieces

. S2 Deconvoluted Raman spectra of (a) ACF-700 (b) ACF-800 samples

Sample	Peak Type	Center	Height	Area	FWHM	A _D /A _G	I_D/I_G
ACF-700	Ι	1215.26	517.76	198658	360.25	3.18	1.17
	D	1341.01	2217.94	532301	168.8		
	D"	1524.76	1542.82	511002	212.38		
	G	1589.84	1891.53	167142	76.31		
ACF-800	Ι	1210.3	730.04	287962	370.52	2.26	1.04
	D	1336.6	2661.31	520355	164.41		
	D"	1519.76	1944.12	721544	239.92		
	G	1585.46	2522.5	233720	63.24		
ACF-900	Ι	1210.78	472.64	168899	322.58		
	D	1340.41	2921.62	598043	130.31	1.84	0.81
	D"	1517.96	898.85	266487	188.76		
	G	1577.07	3594.27	388035	36.68		

Table S1:	Parameters	employed	for peak	deconvolution
-----------	------------	----------	----------	---------------

Fig. S3 (a) Deconvoluted C1s spectra of ACF-700 sample (b) Deconvoluted O1s spectra of ACF-700 sample (c) Deconvoluted C1s spectra of ACF-700 sample (d) Deconvoluted O1s spectra of ACF-700 sample

Table S2: The C and O contents of al	ll samples from XPS	analysis.
--------------------------------------	---------------------	-----------

Sample	C (wt%)	O (wt%)
ACF-700	75.87	24.13
ACF-800	85.81	14.19
ACf-900	94.64	5.36

Fig. S4 (a - b) FESEM images of ACF-700 sample (c - d) FESEM images of ACF-800 samples

Fig. S5 (a & b) CV graph at different scan rates and GCD at different current densities for ACF-700 electrode (c & d) CV graph at different scan rates and GCD at different current densities for ACF-800 electrode (e & f) CV graph at different scan rates and GCD at different current densities for ACF-900 electrode tested in three-electrode configuration in 1M Na₂SO₄ electrolyte (g) Equivalent circuit model of ACF-700 (h) Equivalent circuit model of ACF-800