Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Identification of four novel flavonoid adducts in *Arabidopsis thaliana* (L.) exposed to isobutyl S-2-diethylaminoethyl methylphosphonothiolate as potential plant exposure biomarkers

Zhongfang Xing a, Ruiqian Zhang a, Zhehui Zhao b, Liangliang Wang a, Ling Yuan a, Huilan Yu a,

Yang Yang ^a, Yuntao Yang ^a, Shilei Liu ^a, *, Chengxin Pei ^a, *

^a State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China

^b State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Medicinal

Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College,

Beijing 100050, China

* Corresponding author.

E-mail address: liu_shilei@lacricd.com (S. Liu),

chengxin.ricd@yahoo.com.cn (C. Pei)

Table of contents

Fig. S1. Chemical structure of iBuVX2
Fig. S2. ¹ H NMR spectrum of iBuVX
Fig. S3. ¹³ C NMR spectrum of iBuVX
Fig. S4. ³¹ P NMR spectrum of iBuVX
Fig. S5. Product ion mass spectrum of compound 1
Fig. S6. Product ion mass spectrum of compound 2
Fig. S7. Product ion mass spectrum of m/z 897.2553 (compound 4) in the extracts of leaves from
Arabidopsis thaliana (L.) exposed to iBuVX6
Fig. S8. Product ion mass spectrum of m/z 751.1974 (compound 5) in the extracts of leaves from
Arabidopsis thaliana (L.) exposed to iBuVX7
Fig. S9. Product ion mass spectrum of m/z 869.2521(compound 7) in the extracts of leaves from
Arabidopsis thaliana (L.) exposed to iBuVX8
Fig. S10 The lowest energy conformations of compound 1 and compound 2 8
Fig. S11. Chemical structure of the synthesized compound 6 with atoms numbering9
Fig. S12. ¹ H NMR spectrum of the synthesized compound 6 9
Fig. S13. ¹³ C NMR spectrum of the synthesized compound 6 10
Fig. S14. ³¹ P NMR spectrum of the synthesized compound 6 11
Fig. S15. Product ion mass spectrum of m/z 735.2024 from the synthesized compound 6 12
Fig. S16. EICs (m/z 897.2553) of the extracts of leaves from plants of Nicotiana tabacum Linn.,
Pisum sativum Linn., Tagetes erecta Linn. and Arabidopsis thaliana (L.) leaves with no
exposure to iBuVX12
Fig. S17. EICs (m/z 751.1974) of the extracts of leaves from plants of Nicotiana tabacum Linn.,
Pisum sativum Linn., Tagetes erecta Linn. and Arabidopsis thaliana (L.) leaves with no
exposure to iBuVX13
Fig. S18. EICs (m/z 735.2024) of the extracts of leaves from plants of Nicotiana tabacum Linn.,
Pisum sativum Linn., Tagetes erecta Linn. and Arabidopsis thaliana (L.) leaves with no
exposure to iBuVX

Fig.	S19.	EICs (m/z 869.2521)	of the extracts	of leaves	from plants	of Nicotiana	tabacum	Linn.,
		Pisum sativum Linn.,	Tagetes erecta	Linn. and	Arabidopsis	s thaliana (L.)	leaves w	ith no
		exposure to iBuVX						14

Table S1. The assignment of ¹ H NMR of iBuVX
Table S2. The assignment of ¹³ C NMR of iBuVX4
Table S3. The deviations between calculated and observed m/z values of each fragment derived
from compound 15
Table S4. The deviations between calculated and observed m/z values of each fragment derived
from compound 2 6
Table S5. The deviations between calculated and observed m/z values of each fragment derived
from compound 4 in the extract of leaves exposed to iBuVX7
Table S6. The deviations between calculated and observed m/z values of each fragment derived
from compound 5 in the extract of leaves exposed to iBuVX7
Table S7. The deviations between calculated m/z and observed values of each fragment derived
from compound 7 in the extract of leaves exposed to iBuVX8
Table S8. The assignment of ¹ H NMR of the synthesized compound 6
Table S9. The assignment of ¹³ C NMR of the synthesized compound 6 11
Table S10. The deviations between calculated and observed m/z values of each fragment from the
synthesized compound 6 12

Fig. S1. Chemical structure of iBuVX

Fig. S2. ¹H NMR spectrum of iBuVX

Assignment	Chemical shift(ppm)	Coupling constant(Hz)
a	1.81	³ J _{a-P} =16.20
b	0.96	${}^{3}J_{d-P}=7.80$
с	1.95	${}^{3}J_{d'-P}=7.20$
d,ď	3.76,3.89	${}^{3}J_{c-d} = 6.60$
e	2.91	${}^{3}J_{c-d}$ =6.60
f	2.74	${}^{3}J_{h-g}=7.20$
g	2.58	${}^{3}J_{d-d}$,=9.60
h	1.04	

Table S1. The assignment of ¹H NMR of iBuVX

Fig. S3. ¹³C NMR spectrum of iBuVX

Assignme nt	Chemical shift(ppm)	Coupling constant(Hz)
a	20.00	J _{a-P} =110.16
b,b [°]	18.79,18.75	J _{c-P} =6.04
c	28.99	J _{d-P} =7.54
d	71.04	$J_{f-P}=3.02$
e	28.18	
f	53.69	
g	47.01	
h	11.86	

Table S2. The assignment of ¹³C NMR of iBuVX

Fig. S5. Product ion mass spectrum of **compound 1** Table S3. The deviations between calculated and observed m/z values of each fragment derived from **compound 1**

Fragment	Calculated m/z	Observed m/z	Deviation	
$[M+H]^+$	741.2237	741.2243	0.87 ppm	
$[M+H-C_6H_{10}O_4]^+$	595.1657	595.1643	-2.43 ppm	
$[M + H - C_6 H_{10} O_4 - C_6 H_{10} O_5]^+$	433.1129	433.1136	1.57 ppm	
$[M + H - 2C_6H_{10}O_4 - C_6H_{10}O_5]^+$	287.0550	287.0558	2.75 ppm	

Table S4. The deviations between calculated and observed m/z values of eachfragment derived from compound 2

.

Fragment	Calculated m/z	Observed m/z	Deviation
$[M+H]^+$	595.1657	595.1658	0.09 ppm
$[M+H-C_6H_{10}O_4]^+$	433.1129	433.1124	-1.21 ppm
$[M + H - C_6 H_{10} O_4 - C_6 H_{10} O_5]^+$	287.0550	287.0540	-3.55 ppm

Fig. S7. Product ion mass spectrum of m/z 897.2553 (**compound 4**) in the extracts of leaves from *Arabidopsis thaliana* (L.) exposed to iBuVX

Fragment	Calculated m/z	Observed m/z	Deviation
$[M+Na]^+$	897.2553	897.2588	4.04 ppm
$[M \! + \! Na \! - \! C_6 H_{10} O_4]^+$	751.1974	751.1946	-3.79 ppm
$[M \! + \! Na \! - \! C_6 H_{10} O_4 \! - \! C_4 H_8]^+$	695.1348	695.1334	-2.02 ppm
$[M + Na - C_6 H_{10}O_4 - C_6 H_{10}O_5]^+$	589.1445	589.1455	1.71 ppm
$[M + Na - 2C_6H_{10}O_4 - C_6H_{10}O_5]^+$	443.0866	443.0855	-2.68 ppm
$[M \! + \! Na \! - \! C_6 H_{10} O_4 \! - \! C_{20} H_{21} O_8 P]^+$	331.1000	331.1008	2.75 ppm

Table S5. The deviations between calculated and observed m/z values of each fragment derived from **compound 4** in the extract of leaves exposed to iBuVX

Fig. S8. Product ion mass spectrum of m/z 751.1974 (compound 5) in the extracts of leaves from Arabidopsis thaliana (L.) exposed to iBuVX

fragment derived from compound 5 in the extract of leaves exposed to iBuVX				
Fragment	Calculated m/z	Observed m/z	Deviation	
$[M+Na]^+$	751.1974	751.1997	3.22 ppm	
$[M+Na-C_6H_{10}O_4]^+$	605.1394	605.1400	0.95 ppm	
$[M+Na-C_6H_{10}O_5]^+$	589.1445	589.1421	-4.30 ppm	
$[M + Na - C_6H_{10}O_5 - C_6H_{10}O_4]^+$	443.0866	443.0853	-3.15 ppm	

Table S6. The deviations between calculated and observed m/z values of each

Fig. S9. Product ion mass spectrum of m/z 869.2521(**compound 7**) in the extracts of leaves from *Arabidopsis thaliana* (L.) exposed to iBuVX

Table S7. The deviations between calculated m/z and observed values of each fragment derived from **compound 7** in the extract of leaves exposed to iBuVX

Fragment	Calculated m/z	Observed m/z	Deviation
$[M+Na]^+$	869.2521	869.2491	-3.56 ppm
$[M+Na-C_6H_{10}O_4]^+$	723.1942	723.1932	-1.43 ppm
$[M+Na-2C_6H_{10}O_4]^+$	577.1363	577.1373	1.82 ppm

Fig. S10 The lowest energy conformations of compound 1 and compound 2

Fig. S11. Chemical structure of the synthesized compound 6 with atoms numbering

Fig. S12. ¹H NMR spectrum of the synthesized **compound 6**

Tuble 50. The assignment of Thriving of the synthesized compound of					
Assignment	Chemical shift(ppm)	Assignment	Chemical shift(ppm)		
1,1'	0.91	24	3.13		
2	1.90	25	4.71		
3	3.90	26	2.91		
4	1.70	27	0.78		
6,6'	7.40	28	5.56		
7,7'	7.94	29	3.84		
14	6.81	30	5.14		
16	6.49	31	3.64		
18	12.46	32	4.80		
19	5.28	33	3.30		
20	4.00	34	4.92		
21	5.00	35	3.43		
22	3.43	36	1.13		
23	4.64				

Table S8. The assignment of ¹H NMR of the synthesized **compound 6**

Fig. S13. ¹³C NMR spectrum of the synthesized compound 6

Assignment	Chemical shift(ppm)	Assignment	Chemical shift(ppm)		
1	18.93	16	100.10		
2	29.06	17	161.42		
3	72.20	19	102.64		
4	11.04	20	70.50		
5	152.77	22	70.68		
6	120.99	24	71.50		
7	131.33	26	71.19		
8	126.87	27	17.90		
9	157.19	28	98.89		
10	135.96	29	70.26		
11	178.53	31	70.59		
12	106.49	33	72.03		
13	156.76	35	70.72		
14	95.19	36	18.38		
15	162.37				

Table S9. The assignment of ¹³C NMR of the synthesized **compound 6**

Fig. S14. ³¹P NMR spectrum of the synthesized compound 6

compound 6

Table S10. The deviations between calculated and observed m/z values of eachfragment from the synthesized compound 6

Fragment	Calculated m/z	Observed m/z	Deviation
[M+Na] ⁺	735.2024	735.2022	-0.34 ppm
$[M+Na-C_6H_{10}O_4]^+$	589.1445	589.1444	-0.24 ppm
$[M+Na-C_6H_{10}O_4-C_4H_8]^+$	533.0819	533.0808	-2.22 ppm
$[M+Na-2C_{6}H_{10}O_{4}]^{+}$	443.0866	443.0865	-0.30 ppm
$[M+Na-2C_6H_{10}O_4-C_4H_8]^+$	387.0240	387.0228	-3.36 ppm

Fig. S16. EICs (m/z 897.2553) of the extracts of leaves from plants of *Nicotiana* tabacum Linn., *Pisum sativum* Linn., *Tagetes erecta* Linn. and *Arabidopsis thaliana* (L.) leaves with no exposure to iBuVX

Fig. S17. EICs (m/z 751.1974) of the extracts of leaves from plants of *Nicotiana* tabacum Linn., *Pisum sativum* Linn., *Tagetes erecta* Linn. and *Arabidopsis thaliana* (L.) leaves with no exposure to iBuVX

Fig. S18. EICs (m/z 735.2024) of the extracts of leaves from plants of *Nicotiana* tabacum Linn., *Pisum sativum* Linn., *Tagetes erecta* Linn. and *Arabidopsis thaliana* (L.) leaves with no exposure to iBuVX

Fig. S19. EICs (m/z 869.2521) of the extracts of leaves from plants of *Nicotiana* tabacum Linn., *Pisum sativum* Linn., *Tagetes erecta* Linn. and *Arabidopsis thaliana* (L.) leaves with no exposure to iBuVX