Electronic Supplementary Information for

A carboxylesterase-activatable near-infrared phototheranostic probe for tumor fluorescence imaging and photodynamic therapy

Lihong Li*abc, Qi Zhangac, Jiaojiao Liac, Yafei Tianac, Jinyao Liac, Wen Liubc and Haipeng Diao*abc

- ^a Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
- ^b Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, PR China
- ^c College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China E-mail: lilh@sxmu.edu.cn; diaohp@sxmu.edu.cn

Scheme S1. The synthesis route of HCH-AcAH.

Fig. S1. The HR-ESI-MS of HCH-AcAH.

Fig. S2. ¹H NMR of HCH-AcAH (400 MHz, 298 K, CDCl₃).

Fig. S3. ¹³C NMR of HCH-AcAH (100 MHz, 298 K, CDCl₃).

Fig. S4. The absorption and fluorescence spectra of the fluorophore HCH.

Fig. S5. The HR-ESI-MS of the reaction solution of HCH-AcAH with CES.

Fig. S6. The effects of reaction time (A), temperature (B), and pH (C) on the reaction system of HCH-AcAH (10 μ M) and CES. $\lambda_{ex/em} = 680/710$ nm.

Fig. S7. Fluorescence responses of HCH-AcAH (10 μ M) to various species. (1) blank; (2) CaCl₂ (1 mM); (3) FeCl₃ (1 mM); (4) CuSO₄ (1 mM); (5) MgCl₂ (1 mM); (6) cysteine (100 μ M); (7) tyrosine (100 μ M); (8) proline (100 μ M); (9) methionine (100 μ M); (10) ascorbic acid (100 μ M); (11) glutathione (1 mM); (12) nitroreductase (1 μ g/mL); (13) hyaluronidase (1 μ g/mL); (14) CES (200 U/L). $\lambda_{ex/em} = 680/710$ nm.

Fig. S8. Effects of triphenyl phosphate (TPP, an inhibitor of CES) on the fluorescence of the reaction system. (a) HCH-AcAH (10 μ M); (b) system (a) + CES (200 U/L); (c) system (b) + TPP (100 nM); (d) system (b) + TPP (500 nM). $\lambda_{ex} = 680$ nm.

Fig. S9. Fluorescence changes of DCFH-DA in HCH (1 μ M) upon 660 nm laser (0.25 W/cm²) for different irradiation time (0-10 min). $\lambda_{ex/em} = 485/525$ nm.

Fig. S10. Fluorescence images of HeLa cells incubated with HCH (10 μ M) for 10 min. The nucleus was stained with DAPI. Scale bar, 20 μ m.

Fig. S11. Fluorescence images of HeLa cells treated with DCFH-DA after various treatments. Scale bar, $100 \ \mu m$.

Table S1.	Comparison	of HCH-AcAH	with other reported	fluorescent pr	obes for (CES
	1		1	1		

Types	$\lambda_{\rm ex}/\lambda_{\rm em}$	Detection limit	Biological application	Literature
Photo-	680/710 nm	0.712 U/L	Cell imaging and	This work
theranostic			PDT	
Photo-	445/572 nm	0.0238 U/L	Tumor imaging	Zhuang et al., CCS Chem.,
theranostic			and PDT in vivo	2021, 3 , 1964
Fluorescent	550/585 nm	0.086 U/L	Cell imaging	Zhang et al., Analyst, 2012, 127 , 716
Fluorescent	670/706 nm	3.4 U/L	Cell imaging	Li <i>et al., RSC Adv.,</i> 2019, 9 , 40689
Fluorescent	495/655 nm	0.287 U/L	Cell and mice imaging	Dong et al., Dyes Pigments, 2022, 205 , 110549
Fluorescent	520/575 nm	0.12 U/L	Cell imaging	Zhou <i>et al., J. Mater.</i> <i>Chem. B</i> , 2019, 7 , 2989
Fluorescent	670/720 nm	3.46 nM	Cell and mice imaging	Shu <i>et al., Spectrochim</i> Acta A, 2022, 281 , 121529
Fluorescent	690/710 nm	0.82 U/L	Cell, zebrafish and mice imaging	Wang <i>et al.</i> , <i>ACS Sens.</i> , 2020, 5 , 3264
Fluorescent	437/650 nm	5 U/L	Cell imaging	Peng et al., Anal. Chem., 2017, 89 , 3162

Fluorescent	490/551 nm	95.1 mU/L	Cell imaging	Wang <i>et al.</i> , <i>ACS Appl.</i> <i>Mater. Interfaces</i> , 2018, 10 , 31088
Fluorescent	520/560 nm	390 U/L	Cell imaging	Liu <i>et al., Biosens.</i> <i>Bioelectron.</i> , 2022, 211 , 114392.
Fluorescent	590/640 nm	17 ng/mL	Cell, zebrafish and mice imaging	Liu <i>et al., Anal. Chim.</i> <i>Acta</i> , 2022, 1221 , 340126
Fluorescent	555/595 nm	60.7 mU/L	Cell imaging	Sun <i>et al.</i> , <i>Chinese Chem.</i> <i>Lett.</i> , 2022, 33 , 4229