A new fluorescent probe for Al³⁺ ion sensing in solution phase and CH₃COO⁻ in solid state with aggregation induced emission (AIE) activity

Rahul Bhowmick, Payel Mondal and Pabitra Chattopadhyay*

Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, INDIA

Supporting Information

CONTENTS

- 1. **Figure S1.**¹H NMR of **DFP-AMQ** in DMSO-d₆.
- 2. Figure S2. Mass spectra of DFP-AMQ.
- 3. Figure S3.FTIR spectra of DFP-AMQ.
- 4. Figure S4. ¹H NMR of [DFP-AMQ-AI]⁺in DMSO-d₆.
- 5. Figure S5.Mass spectra of [DFP-AMQ-Al]⁺.
- 6. Figure S6. FTIR spectra of [DFP-AMQ-Al]⁺.
- 7. **Figure S7.** Job's plot for the determination of the composition of the**DFP-AMQ**–Al³⁺ complex.
- 8. Figure S8. Fluorescence emission of DFP-AMQ (20 µM) induced by different cations.
- 9. Figure S9. Reversibility study by EDTA.
- 10. Figure S10. Limit of detection.
- 11. Figure S11. pH dependence of the FIs of DFP-AMQ and DFP-AMQ-Al³⁺ complex.
- 12. Figure S12. Dynamic light scattering (DLS) study of DFP-AMQ-Al³⁺ with different percentages of H₂O: (A) 0%, (B) 20% and (C) 50% and shows the average size (A) 204.04 nm, 297.41 nm and 315.27 nm.
- 13. Figure S13. Fluorescence emission of DFP-AMQ with NO₃⁻ and both NO₃⁻ with other anions in solid state (at $\lambda_{ex} = 450$ nm).
- 14. Figure S14. Lifetime measurement of the probe DFP-AMQ in CH₃CN and in CH₃CN- H_2O (9:1,v/v) medium and DFP-AMQ-Al³⁺ in CH₃CN- H_2O (9:1,v/v) medium.

Figure S1.¹H NMR of DFP-AMQ in DMSO-d₆.

Figure S2.Mass spectra of DFP-AMQ.

Figure S3. FTIR spectra of DFP-AMQ.

Figure S4. ¹H NMR of [DFP-AMQ-Al]⁺in DMSO-d₆.

Figure S5.Mass spectra of [DFP-AMQ-Al]⁺.

Figure S6. FTIR spectra of [DFP-AMQ-Al]⁺.

Figure S7. Job's plot for the determination of the composition of the DFP-AMQ-Al³⁺ complex.

Figure S8. Fluorescence emission of DFP-AMQ (20 μ M) induced by different cations (100 μ M)

Figure S9. Reversibility study by EDTA.

Figure S10. Limit of detection of Al³⁺.

Figure S11. pH dependence of the FIs of the free ligand DFP-AMQ(above) and the DFP-AMQ– Al^{3+} complex (below).

Figure S12. Dynamic light scattering (DLS) study of **DFP-AMQ-Al³⁺** with different percentages of H_2O : (A) 0%, (B) 20% and (C) 50% and shows the average size (A) 204.04 nm, 297.41 nm and 315.27 nm.

Figure S13. Fluorescence emission of DFP-AMQ with NO₃⁻ and both NO₃⁻ with other anions in solid state (at $\lambda_{ex} = 450$ nm).

