The design of experiments (DoE) in optimization of an aerobic flow Pdcatalyzed oxidation of alcohol towards an important aldehyde precursor in the synthesis of phosphatidylinositide 3-kinase inhibitor (CPL302415)

Stanisław Michałek, ${ }^{\text {a,b }}$ Lidia Gurba-Bryśkiewicz, ${ }^{\text {b }}$ Wioleta Maruszak, ${ }^{\text {b }}$ Marcin Zagozda, ${ }^{\text {b }}$ Anna M. Maj, ${ }^{\text {b* }}$ Zbigniew Ochal, ${ }^{\text {a }}$ Krzysztof Dubiel ${ }^{\text {b }}$ and Maciej Wieczorek ${ }^{\text {b }}$

Contents

1. Materials and Methods S1
1.1. Design of Experiments (DoE) S2
1.2. High Field NMR S2
1.3. UHPLC analytical method S2
1.4. Note of Caution S3
2. Experimental Details S4
3. DoE Analysis S7
4. Green metrics calculations S11
5. NMR spectrum and HRMS analysis S19
6. Real photo of the flow equipment. S24
7. References S24

1. Materials and Methods

Solvents and chemicals were obtained from commercial suppliers and were used without any further purification unless otherwise noted.

The
\{5-[2-(difluoromethyl)-2,3-dihydro-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl\}methanol (1) was synthesized according to the procedure published by us. ${ }^{1,2}$ Oxygen was purchased from Air Product.
Experiments were performed using a combined two Vapourtec easy-Medchem with four standard PFA tubular reactors (10 mL each, $\mathrm{id}=1 \mathrm{~mm}$). All tubes and mixers were bought from Vapourtec.
Pressure to the system was delivered to the system using a second Vapourtec SF-10 pump and back pressure regulator (BPR) Vapourtec SF-10 pump was used as a mass flow controller.

Main components utilized within a continuous flow reactor	
Pump	Vapourtec V-3 Peristaltic pump
Mass flow meter	Vapourtec SF-10
Mixer	Vapourtec Y-type mixer Material: PTFE i.d. 1 mm $<0.1 \mathrm{~mL}$
Reactor	Vapourtec PFA 10 mL coil reactor i.d $=1 \mathrm{~mm}$ Temperature control: Vapourtec easy-Medchem

Back pressure regulator	Vapourtec SF-10 Adjustable pressure
Miscellaneous fittings	Vapourtec
	PFA tubes
i.d. $=1 \mathrm{~mm}$	

1.1 Design of Experiments (DoE)

The DoE study and statistical analysis were performed by using the design of experiment tools of STATISTICA software (v.13.3). The experimental data were fitted by using multiple linear regression. The main and interaction effects were generated based on multivariate ANOVA. The statistical significance level was set up to 0.05 . The goodness of fit of the models was expressed in regression coefficient R^{2}.

1.2 High Field NMR

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were performed on JOEL JNMR-ECZR 600 MHz spectrometers with ${ }^{1} \mathrm{H}$ being observed at 600 MHz and ${ }^{13} \mathrm{C}$ at 151 MHz . Chemical shifts for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ were reported in $d(\mathrm{ppm})$ using the residual proton in a deuterated solvent. Mass spectra (Atmospheric Pressure Ionization Electrospray, API-ES) were obtained on Agilent 6130 LC/MSD spectrometer or Agilent 1290 UHPLC coupled with Agilent QTOF 6545 mass spectrometer.

1.3 UHPLC analytical method

Reaction in-process monitoring was conducted by the RP UHPLC method using the parameters listed in Table 1.3.1:
Table 1.3.1. Chromatographic conditions

Parameters	Range	
Instrumentation	Ultra-high performance liquid chromatograph equipped with an UV/DAD detector, autosampler, and column heater	
Column	Acquity UPLC CSH C18; $2.1 \mathrm{~mm} \times 100 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$	
Mobile phases	Phase A: 0.1% ortho-phosphoric acid in water Phase B: 0.1% ortho-phosphoric acid in ACN	
Diluent	Methanol	
Flow	$0.5 \mathrm{~mL} / \mathrm{min}$	
Run time	11 min	
Column temperature	$30^{\circ} \mathrm{C}$	
Autosampler temperature	$10^{\circ} \mathrm{C}$	
Injection volume	$1 \mu \mathrm{~L}$	
Detection Wavelength	254 nm	
Typical Retention Time	Alcohol $\mathbf{1}$ about 4.1 min , Aldehyde $\mathbf{3}$ about 5.5 min	
Rinsing the column	After analysis rinse the column for 10 min using ACN : water ($10: 90, \mathrm{v} / \mathrm{v}$) solution then during 10 min using ACN ; store the column with ACN	
Gradient program		
Time, min	Mobile phase A, \%	Mobile phase B, \%
0.0	90.0	10.0
6.0	40.0	60.0
7.5	10.0	90.0
9.0	10.0	90.0
9.10	90.0	10.0
11.0	90.0	10.0

Reporting of results and calculations

System suitability:

- The resolution between the peaks of alcohol $\mathbf{1}$ and its nearest impurity must not be less than 1.5 ;
- Symmetry factor for alcohol $\mathbf{1}$ peak: within the range from 0.8 to 1.5 ;

Evaluation of chromatograms

- Disregard peaks from the blank matrix and diluents;
- Disregard peaks less than 0.05\%;

Calculations

The progress of the reaction (product aldehyde yield) was controlled based on the normalization procedure according to the following formula:

$$
X=\frac{A_{X} \cdot C F \cdot 100 \%}{\Sigma A_{X i}}
$$

where:
X - aldehyde product $\mathbf{3}$ percentage of in the chromatogram of the sample solution,
A_{X} - aldehyde $\mathbf{3}$ peak area in the chromatogram of the sample solution,
CF - correction factor of aldehyde $\mathbf{3}$ versus alcohol $\mathbf{1}$
$S A_{x_{i}}$ - the sum of the areas of all integrated peaks in the chromatogram of the sample solution.

1.4 Note of Caution

The mixtue of O_{2} with organic solvents vapours is extremely flammable! Pressurized equipment should be operated with care! Before conducting any experiments, an individual, careful safety assessment including reaction kinetics and explosive hasards should be carried out!

2. Experimental Details

General procedure

Alcohol 1 was dissolved in an appropriate solvent or mixture ($200 \mathrm{mg} / 20 \mathrm{~mL}$) (Reagent A).
Palladium acetate was dissolved in toluene, then pyridine was added using an automatic pipette (Reagent B). The solvent bottle was filled with toluene for the reaction, 2 mL of each solution was used. Both reagents and oxygen were pumped at an appropriate flow rate. Reagent A was mixed with oxygen using the Y-shaped mixer, run through a 28 cm long tube to saturate it with gas, and later combined with reagent B in the Y-shape mixer. The reaction was performed at different temperatures at first within two heated PFA tubular reactors. Next, in order to extend the reaction time, the reaction mixture feed was supplemented with oxygen and transferred into next two heated reactors at the same temperature. FlowWizard ${ }^{\text {TM }}$ software, which calculated reaction time, controlled the easy-Medchem system and the collection/waste valve. The reaction mixture (4 mL) was collected offline into the flask and analyzed by UHPLC.

Synthesis of compound 3 in flow - 1 g test

Alcohol 1 ($1.05 \mathrm{~g} ; 2.61 \mathrm{mmol}$) was dissolved in 105 mL mixture of toluene: ethyl acetate $1: 1$ and kept in an oil bath at $80^{\circ} \mathrm{C}$ (Reagent A). Palladium acetate ($0.12 \mathrm{~g} ; 0.524 \mathrm{mmol} ; 20 \% \mathrm{~mol}$) was dissolved in 105 mL toluene, then pyridine (60 uL ; $0.745 \mathrm{mmol} ; 26 \% \mathrm{~mol}$) was added using automatic pipette (Reagent B). Upon addition of pyridine to palladium acetate solution (orange) brightened to yellow. The solvent bottle was filled with toluene (for both reagents). For the reaction, 100 mL of each solution was used (1.00 g of substrate; 2.49 mmol). Both reagents were pumped at flow rate $=1 \mathrm{~mL} / \mathrm{min}$, and oxygen was pumped with flow rate of $0.1 \mathrm{~mL} / \mathrm{min}$. Reagent A was mixed with oxygen using the Y-shaped mixer, run through a 28 cm long tube to saturate it with gas, and later combined with reagent B in the Y-shape mixer. The reaction was performed at $120^{\circ} \mathrm{C}$ at first within two heated PFA tubular reactors. Next, in order to extend the reaction time, the reaction mixture feed was supplemented with oxygen and transferred into next two heated reactors. FlowWizard ${ }^{\text {TM }}$ software which calculated reaction time, controlled the easy-Medchem system and the collection/waste valve. The fraction obtained during "steady-state" operation, which corresponded to an operating time of $93 \mathrm{~min}(186 \mathrm{~mL} ; 0.93 \mathrm{~g}$ of substrate) collected into the round bottom flask, vaporized, and purified via column chromatography. 0.671 g of yellow solid was obtained (yield $=72.6 \%$). 1H-NMR (400 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~m}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.44-7,16(\mathrm{t}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.05-$ 3.92 (m, 8H)

Synthesis of compound 3 in batch autoclave using $\mathrm{Pd}(\mathrm{OAc})_{2}$
The reaction was prepared under un inert argon atmosphere. Alcohol 1 ($100 \mathrm{mg} ; 0,25 \mathrm{mmol}$) was placed in 35 mL vial under argon and solubilised with dry and degassed toluene/EtOAc $1: 1$ mixture (25 mL). The palladium acetate (11.4 mg ; 0.05 mmol ; $20 \% \mathrm{~mol}$) was also placed in a 35 mL vial under argon and solubilised with toluene/EtOAc 1:1 mixture (15 mL) and then mixed with pyridine ($5.2 \mathrm{uL} ; 0.0649 \mathrm{mmol} ; 26 \% \mathrm{~mol}$). Next, the content of the both vials was transferred under argon to a 300 mL Büchi miniclave containing a magnetic stirrer bar. After three purges with O_{2} the reactor was then pressurised at 5 bar O_{2} at ambient temperature then heated at $120^{\circ} \mathrm{C}$ during 2 h . After the reaction, the autoclave was cooled at ambient temperature. The vented and the crude mixture was filtered throught silica gel pad and analysed by using UHPLC. Resulted with 45% yield of 3.

Synthesis of compound 3 in batch using $\mathrm{MnO}_{2}{ }^{1}$

According to the described procedure described by us in Ref [1]
The 2 L batch reactor was loaded with 27 g of compound 1 (0.067 mol), $58,4 \mathrm{~g}$ activated manganese oxide (0.667 mol), 350 mL and toluene, and 350 mL butyl acetate. The reaction mixture was heated and mixed (200 rpm). The temperature was set to $120^{\circ} \mathrm{C}$. After reaching reflux, the timer was set to 1.5 h . The reaction was controlled using TLC. After reaction completion, the mixture was cooled to $25^{\circ} \mathrm{C}$. Reaction mixture was filtered on Schott funnel G-4 using 100 g Celite ${ }^{\circledR} 545$ and washed with 200 mL DCM. Filtrate was evaporated resulting in 18.2 g creamy solid (yield=68.1\%) $1 \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 10.21(\mathrm{~s}, 1 \mathrm{H})$, 7.94-7.92 (m, 1H), 7.71-7.69 (m, 1H), 7.48-7.42 (m, 2H), 7.39-7.21 (t, 1H), 7.11-7.10 (m, 1H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 8 \mathrm{H})$

Synthesis of compound 3 in batch using Dess-Martin periodinane ${ }^{1}$
According to the described procedure described by us in Ref [1]

Table S1. Additional conditions screened for flow $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine catalyzed aerobic oxidation of $\mathbf{1}$ in Toluene.

Entry	Catalyst loading $(\%)$	Pyridine eq. per catalyst	T $\left({ }^{\circ} \mathrm{C}\right)$	PO_{2} (bar)	V of O_{2} $(\mathrm{~mL} / \mathrm{min})$	V of reagents $(\mathrm{mL} / \mathrm{min})$	Conv. of $\mathbf{1}(\%)$	Yield of 2 $(\%)$	Yield of 3 $(\%)$
1	$20 \mathrm{~mol} \%$	4	100	4	0.1	0.1	68.87	0	63.16
2	$20 \mathrm{~mol} \%$	4	100	5	0.222	0.222	72.3	0	72.3
3	$20 \mathrm{~mol} \%$	4	100	5	2.02	2.02	10.82	0	10.82
4	$20 \mathrm{~mol} \%$	1.3	130	5	1	0.15	0	0	0
5	$20 \mathrm{~mol} \%$	1.3	130	5	1	0.1	0	0	0
6	$20 \mathrm{~mol} \%$	1.3	130	5	0.5	0.25	54.32	0	54.32
7	$20 \mathrm{~mol} \%$	1.3	130	5	1	0.15	13.65	0	13.65
8	$20 \mathrm{~mol} \%$	1.3	130	5	1	0.25	100	0	0
9	$20 \mathrm{~mol} \%$	1.3	120	5	0.4	0.4	94.16	0	89.14

${ }^{\text {a }}$ Standard reaction conditions: : substrate $\mathbf{1}=20 \mathrm{mg}(0.05 \mathrm{mmol})$ dissolved in 2 mL Toluene.

Table S2. Additional conditions screened for flow $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine catalyzed aerobic oxidation of $\mathbf{1}$ in different solvents or solvent mixture.

Entry	Catalyst loading (\%)	Pyridine eq. per catalyst	Solvent	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \mathrm{PO}_{2} \\ \text { (bar) } \end{gathered}$	$\begin{gathered} \mathrm{V} \text { of } \\ \mathrm{O}_{2} \\ (\mathrm{~mL} / \\ \mathrm{min}) \end{gathered}$	$\begin{gathered} \mathrm{V} \text { of } \\ \text { reagents } \\ (\mathrm{mL} / \mathrm{min}) \end{gathered}$	Conv. of 1 (\%)	Yield of 2 (\%)	Yield of 3 (\%)	Yield of 4 (\%)
1	$20 \mathrm{~mol} \%$	0	Toluene/Caprolactone 1:1	130	5	1	0.15	18.53	0.17	16.98	0
2	$20 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	130	5	0.5	0.15	83.3	1.16	77.67	0
3	$20 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	130	5	1	0.15	77.78	0	77.78	0
4	$5 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	120	5	0.1	0.55	10.05	0	4.25	0
5	$5 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	130	5	0.1	1	11.19	0	5.18	0
6	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	100	3	0.1	0.1	39.52	0.6	37.90	0
7	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	100	3	0.22	0.1	49.0	0	48.96	0
8	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	100	3	0.22	0.33	53.62	0	53.62	0
9	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	100	5	0.4	0.4	52.86	0.27	52.58	0
10	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	120	5	0.4	0.4	78.99	0	78.99	0
11	$20 \mathrm{~mol} \%$	4	Toluene/Caprolactone 1:1	100	5	0.1	0.1	41.2	0.67	39.4	0
12	$10 \mathrm{~mol} \%$	4	DMA	100	2	0.11	0.11	2.0	0	0	0
13	$10 \mathrm{~mol} \%$	4	DMA	130	5	0.11	0.11	25.01	0.69	7.4	0
14	$20 \mathrm{~mol} \%$	4	DMA	150	8	0.25	0.25	60.1	0	16.3	9.5
15	$20 \mathrm{~mol} \%$	1.3	EtOAc	130	5	1	0.1	66.12	0	66.12	0
16	$20 \mathrm{~mol} \%$	1.3	EtOAc	130	5	1	0.15	45.32	0	44.06	0
17	$20 \mathrm{~mol} \%$	1.3	EtOAc	120	5	0.4	0.4	26.64	0	24.23	0
Air instead of O_{2}											
18	$20 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	130	5	1	0.15	72.45	0	27.55	0
19	$20 \mathrm{~mol} \%$	1.3	Toluene/Caprolactone 1:1	130	5	0.5	0.15	52.82	0	47.18	0

${ }^{\text {a }}$ Standard reaction conditions: substrate $\mathbf{1}=20 \mathrm{mg}(0.05 \mathrm{mmol})$ dissolved in 2 mL of solvent.

Table S3. Additional conditions screened for flow $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine catalyzed aerobic oxidation of $\mathbf{1}$ in different solvents or solvent mixtures.

Entry	Catalyst loading $(\%)$	Pyridine eq. per catalyst		Solvent	T $\left({ }^{\circ} \mathrm{C}\right)$	PO_{2} (bar)	V of O_{2} $(\mathrm{~mL} /$	V of reagents $(\mathrm{mL} / \mathrm{min})$	Conv. of $\mathbf{1}$ $(\%)$	Yield of $\mathbf{2}$ $(\%)$	Yield of $\mathbf{3}(\%)$
1					Yield of $\mathbf{4}$ $(\%)$						
2	22.5	2.6	Toluene/EtOAc 1:1	120	5	0.1	1	80.18	0	75.16	0
3	40	1.3	Toluene/ EtOAc 1:1	120	5	0.1	0.1	90.25	0	67.63	0
4	40	1.3	Toluene/ EtOAc 1:1	120	5	0.1	1	83.71	0	74.07	0
1	5	1.3	Toluene/EtOAc 1:1	120	5	0.1	0.1	23.22	0	20.61	0

${ }^{\text {a }}$ Standard reaction conditions: substrate $\mathbf{1}=20 \mathrm{mg}(0.05 \mathrm{mmol})$ dissolved in 2 mL of solvent.

Table S4. Additional conditions screened for flow $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine catalyzed aerobic oxidation of 1 in Toluene/EtOAc -1 g synthesis.

Entry	Catalyst loading $(\%)$	Pyridine eq. per catalyst	T $\left({ }^{\circ} \mathrm{C}\right)$	PO_{2} (bar)	V of O_{2} $(\mathrm{~mL} / \mathrm{min})$	V of reagents $(\mathrm{mL} / \mathrm{min})$	Conv. of $\mathbf{1}$ $(\%)$	Yield of $\mathbf{2}(\%)$	Yield of $\mathbf{3}$ $(\%)$
1	20 mol\%	1.3	120	5	0.1	1	100	16	84 $(72.6 \%)^{a}$

${ }^{a}$ isolated yield.

Remark 1: For the higher temperature $\left(130^{\circ} \mathrm{C}\right)$ catalyst starts decomposing slowly in the reactor. It is easy to overlook, but after running a couple of experiments, palladium deposition on the reactor's walls becomes visible.

Remark 2: At a higher temperature $\left(150^{\circ} \mathrm{C}\right)$ we observed the formation of the acidic product 4.
Remark 3: The additional microreactor LTF-MS (Volume $0,2 \mathrm{ml}$; id: 1 mm) used as a mixer installed after the second reactor in order to increase the mixing of the additional O_{2} portion did not increase the yield of the desired product. ${ }^{2}$

Figure S1. Summary of the model for screening DOE 2^(6-3) for product $\mathbf{3}$ yield.

Figure S2. Summary of the Central Composite Design (CCD) model 2^(3) for product 3 yield.

Surface response for aldehyde product yield, Central Composite Design Model 2**(3), Temperature $=120 \mathrm{C}$

Figure S3. D-optimal design for product $\mathbf{3}$ yield.

4. Green metrics calculations ${ }^{3-5}$

4.1 $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine - no workup

$\mathrm{MW}(\mathrm{g} / \mathrm{mol})$	
1	402.40
3	398.37
O_{2}	32.00

$A E(\%)=\frac{\text { Mol wt of product } x 100}{\text { Sum of mol wts of reactants }}=91.71$

Role	Chemical	Mass (g)	Volume (mL)	Density (g/mol)	
Reaction					
Reactant	Alcohol (1)	0.3			
Reactant	Oxygen	0.133			
Catalyst	Pd(OAc)	0.106			
Reagent	Pyridine	0.049	0.054	0.982	
Solvent	Toluene	120.95	150	0.867	
Solvent	Ethyl acetate	41.94	50	0.902	
	Reaction total	164.11			
Product					
Product	Aldehyde (3)	0.785			

RME (\%) $=\frac{\text { Mass of product } x 100}{\text { Total mass of reactants }}=64.43$
$O E(\%)=\frac{R M E \times 100}{A E}=70.26$
$\operatorname{PMI}($ reaction $)=\frac{\text { Total mass in reaction }}{\text { Mass of product }}=209.05$
$E=\frac{\text { Total mass of waste }}{\text { Mass of product }}=\frac{0.106+0.300}{0.785}=0.52$
$W I=\frac{\text { Total mass of } \text { waste }}{\text { Total mass input }}=0.00025$

Mass of product (kg)	Time (h)	Reactor volume $\left(\mathrm{m}^{3}\right)$
0.000785	1.55	0.00004

Spacetime yield $=\frac{\text { Mass of product }}{\text { Reaction time x volume of reactor used }}=12.66$
4.2 $\mathrm{Pd}(\mathrm{OAc})_{2} /$ Pyridine - with product isolation

$A E(\%)=\frac{\text { Mol wt of product } x 100}{\text { Sum of mol wts of reactants }}=91.71$

Role	Chemical	Mass (g)	Volume (mL)	Density (g/mol)				
Reaction								
Reactant	Alcohol (1)	0.93						
Reactant	Oxygen	0.133						
Catalyst	Pd(OAc) ${ }_{2}$	0.106		0.982				
Reagent	Pyridine	0.049	0.054	0.867				
Solvent	Toluene	120.95	150	0.902				
Solvent	Ethyl acetate	41.94	50					
	Reaction total					164.64		0.684
Work-up	Silica-gel column	47.5		0.902				
LC	145.0	212						
Solvent	Heptane	68.6						
Solvent	Ethyl acetate	261.1						
		Reaction and work-up total	425.7					

RME (\%) $=\frac{\text { Mass of product } x 100}{\text { Total mass of reactants }}=55.09$
$O E(\%)=\frac{R M E \times 100}{A E}=60.06$
$\operatorname{PMI}($ reaction $)=\frac{\text { Total mass in reaction }}{\text { Mass of product }}=244.57$
$E=\frac{\text { Total mass of waste }}{\text { Mass of product }}=\frac{425.7-0.671}{0.671}=632.69$
$W I=\frac{\text { Total mass of waste }}{\text { Total mass input }}=0.998$

Mass of product (kg)	Time (h)	Reactor volume $\left(\mathrm{m}^{3}\right)$
0.000671	1.55	0.00004

Spacetime yield $=\frac{\text { Mass of product }}{\text { Reaction time } x \text { volume of reactor used }}=10.82$

$\mathrm{MW}(\mathrm{g} / \mathrm{mol})$	
1	402.40
3	398.37
MnO_{2}	86.94

$$
A E(\%)=\frac{\text { Mol wt of product } x 100}{\text { Sum of mol wts of reactants }}=69.13
$$

Role	Chemical	Mass (g)	Volume (mL)	Density (g/mol)				
Reaction	27.0							
Reactant	Alcohol (1)	58.4						
Reactant	MnO_{2}	303.5	350	0.867				
Solvent	Toluene	308.7	350	0.882				
Solvent	Butyl acetate	697.5						
	Reaction total					100		
Work-up	265.0		1.325					
Column	Celite ${ }^{\circledR}$	200						
Solvent	DCM							
	Reaction and work-up total	1062.5						
	Product							
Product	Aldehyde (3)	18.2						

$$
\begin{gathered}
\text { RME }(\%)=\frac{\text { Mass of product } x 100}{\text { Total mass of reactants }}=31.62 \\
O E(\%)=\frac{\text { RME } x 100}{A E}=30.06 \\
\text { PMI (reaction })=\frac{\text { Total mass in reaction }}{\text { Mass of product }}=38.32 \\
\text { PMI }(\text { workup })=\frac{\text { Total mass used for workup }}{\text { Mass of product }}=20.05 \\
\text { PMI }(\text { total })=\frac{\text { Total mass process }}{\text { Mass of product }}=58.37
\end{gathered}
$$

$$
\begin{gathered}
E=\frac{\text { Total mass of waste }}{\text { Mass of product }}=57.37 \\
W I=\frac{\text { Total mass of waste }}{\text { Total mass input }}=0.983
\end{gathered}
$$

Mass of product (kg)	Time (h)	Reactor volume $\left(\mathrm{m}^{3}\right)$
0.0182	1.5	0.002

$$
\text { Spacetime yield }=\frac{\text { Mass of product }}{\text { Reaction time x volume of reactor used }}=6.07
$$

$\mathrm{MW}(\mathrm{g} / \mathrm{mol})$	
1	402.40
3	398.37
DMP	424.14

$A E(\%)=\frac{\text { Mol wt of product } x 100}{\text { Sum of mol wts of reactants }}=31.85$

Role	Chemical	Mass (g)	Volume (mL)	Density (g/mol)
Reaction				
Reactant	Alcohol (1)	0.9		
Reactant	DMP	1.31		
Solvent	DMF	24.54	26	0.944
	Reaction total	26.75		
Work-up				
Solvent	Ethyl acetate	13.53	15	0.902
LC	Silica-gel column	33.30		
Solvent	Heptane	103.97	152	0.684
Solvent	Ethyl acetate	51.41	57	0.902
	Work-up total	202.21		
	Reaction and work-up total	228.97		
Product				
Product	Aldehyde (3)	0.70		

$$
\begin{gathered}
\text { RME }(\%)=\frac{\text { Mass of product } x 100}{\text { Total mass of reactants }}=24.29 \\
O E(\%)=\frac{R M E \times 100 \%}{A E}=76.26 \\
\text { PMI(reaction })=\frac{\text { Total mass in reaction }}{\text { Mass of product }}=34.66
\end{gathered}
$$

$$
\begin{gathered}
\text { PMI }(\text { workup })=\frac{\text { Total mass used for workup }}{\text { Mass of product }}=273.46 \\
\text { PMI }(\text { total })=\frac{\text { Total mass process }}{\text { Mass of product }}=308.12 \\
E=\frac{\text { Total mass of } \text { waste }}{\text { Mass of product }}=307.12 \\
W I=\frac{\text { Total mass of waste }}{\text { Total mass input }}=0.997
\end{gathered}
$$

Mass of product (kg)	Time (h)	Reactor volume $\left(\mathrm{m}^{3}\right)$
0.00102	1	0.00005

$$
\text { Spacetime yield }=\frac{\text { Mass of product }}{\text { Reaction time x volume of reactor used }}=20.4
$$

5. NMR spectrum

\{5-[2-(difluoromethyl)-2,3-dihydro-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4- yl)pyrazolo[1,5-a]pyrimidin-2-yl\}methanol (1)

1H-NMR (600 MHz, DMSO-D6) $\delta 7.78$ (d, 1H), 6.81 (td, $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.75 (d,1H), 6.71 (td, J = 7.7, 1H), 6.67 (dd, 1H), 6.30$6.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CF}_{2} \mathrm{H}\right), 6.24(\mathrm{~d}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{t}, 1 \mathrm{H}), 4.55(\mathrm{~d}, 2 \mathrm{H}), 3.82-3.65(\mathrm{~m}, 8 \mathrm{H}) ; 13 \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz}$, DMSO-D6) $\delta 157.6,152.4,150.6,149.7,142.0,133.2,122.7,118.6,113.9,113.0,109.4,91.1,80.6,73.9,65.6,58.0,48.0$ HRMS (ESI/MS): m/z calculated for C19 H20 F2 N6 O2 [M + H]+ 402.1616 found 402.1613

\{5-[2-(difluoromethyl)-1H-1,3-benzodiazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidin-2-yl\}methanol (2)
1H-NMR (600 MHz, DMSO-D6) $\delta 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.82(\mathrm{~d}, 1 \mathrm{H}), 7.64-7.46\left(\mathrm{t}, 1 \mathrm{H}_{\mathrm{CF}}^{2} \mathrm{H}\right), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}) 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H})$, $5.40(\mathrm{t}, 1 \mathrm{H}), 4.66(\mathrm{~d}, 2 \mathrm{H}), 3.94-3.83(\mathrm{~m}, 8 \mathrm{H}) ; 13 \mathrm{C}-\mathrm{NMR}(151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D} 6)$ S 158.8, 151.0, 149.7, 147.0, 144.7, 141.2, 134.1, 125.5, 123.9, 120.7, 112.4, 108.6, 94.1, 87.8, 65.6, 57.9, 48.2

HRMS (ESI/MS): m/z calculated for C19 H18 F2 N6 O2 [M + H]+ 400.1459 found 400.1456.

5-[2-(difluoromethyl)-1H-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carbaldehyde (3)
1H-NMR (600 MHz, DMSO-D6) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{dd}, 2 \mathrm{H}), 7.65-7,47\left(\mathrm{t}, 1 \mathrm{H} ; \mathrm{CF}_{2} \mathrm{H}\right) 7,49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}$,

1H), 3.99-3.86 (m, 8H); 13C-NMR (151 MHz, DMSO-D6) $\delta 188.1,152.3,151.6,150.0,148.3,144.7,141.2,133.9,125.6,124.1$,
120.7, 112.5, 108.5, 95.2, 90.3, 65.6, 48.5

HRMS (ESI/MS): m/z calculated for C19 H16 F2 N6 O2 [M + H] 398.1303 found 398.1303.

5-[2-(difluoromethyl)-1H-1,3-benzimidazol-1-yl]-7-(morpholin-4-yl)pyrazolo[1,5-a]pyrimidine-2-carboxylic acid (4) 1H-NMR ($600 \mathrm{MHz}, ~ D M S O-D 6) \delta 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.84(\mathrm{~d}, 1 \mathrm{H}), 7.64-7.46\left(\mathrm{t}, 1 \mathrm{H}_{2} \mathrm{CF}_{2} \mathrm{H}\right), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, 1 H), 3.98-3.84 (m, 8H) 13C-NMR (151 MHz, DMSO-D6) $\delta 163.1,151.3,149.7,147.8,147.8,144.7,141.2,134.0,125.6,124.1$, 120.7, 112.5, 108.5, 97.9, 89.6, 65.6, 48.4

HRMS (ESI/MS): m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 414.12519$ found 414.12546.

6. Real photo of the flow equipment

7.
8. References
[1] Stypik, M.; Michałek, S.; Orłowska, N.; Zagozda, M.; Dziachan, M.; Banach, M.; Turowski, P.; Gunerka, P.; ZdżalikBielecka, D.; Stańczak, A.; Kędzierska, U.; Mulewski, K.; Smuga, D.; Maruszak, W.; Gurba-Bryśkiewicz, L.; Leniak, A.; Pietruś, W.; Ochal, Z.; Mach, M.; Zygmunt, B.; Pieczykolan, J.; Dubiel, K.; Wieczorek, M. Pharmaceuticals 2022, 15, 927.
[2] D. J. C. Constable, A.D. Curzons, V. L. Cunningham Green Chem., 2002, 4, 521.
[3] C. R. McElroy, A. Constantinou, L. C. Jones, L. Summerton and J. H. Clark, Green Chem., 2015, 17, 3111.
[4] R. A. Sheldon, ACS Sustainable Chem. Eng. 2018, 6, 32.

