## Electronic supporting information for

"Experimental evidence for  $CH \cdots \pi$  interaction-mediated atabilization of the square

form in phenylglycine-incorporated ascidiacyclamide"

Akiko Asano\*, Katsuhiko Minoura, Takeshi Yamada, and Mitsunobu Doi

Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka

569-1094, Japan.

Contents:

| Synthesis and characterization of the peptides <b>Xb</b> and <b>Xc</b> (X=2-4)·····Page 2-7              |
|----------------------------------------------------------------------------------------------------------|
| <sup>1</sup> H NMR spectra for peptides <b>Xb</b> and <b>Xc</b> (X=2-4)·····Page 8-25                    |
| Crystallographic data for peptides <b>2b</b> and <b>2c</b> ·····Page 26                                  |
| The CH $\cdots\pi$ contacts within the crystal structures of <b>1c</b> and <b>2c</b> $\cdots$ Page 27-28 |
| Temperature coefficients of protons of Xaa <sup>1</sup> alkyl side chain in Xc peptidesPage 29           |
| Thermodynamic parameters and van't Hoff plots for <b>Xb</b> and <b>Xc</b> (X=2-4) peptidesPage 30-35     |
| Cytotoxicities of peptides toward HL-60 cell·····Page 36                                                 |
| Chemical structure of <i>d</i> ASC and T3ASC as reference peptides                                       |

#### Synthesis and characterization of the peptides Xb and Xc (X=2-4).

### **General Experimental Methods**

Pure products were obtained after liquid chromatography using Merck silica gel 60 (40-63  $\mu$ m). Analytical thin-layer chromatography was carried out on Merck silica gel F<sub>254</sub> plates with the following solvent system (v/v); chloroform : methanol : acetic acid (95 : 10 : 3). The plates were visualized with UV light ( $\lambda = 254$  nm) and revealed with a 5 % solution of ninhydrin in ethanol. <sup>1</sup>H NMR spectra were recorded on an Agilent DD2 600-MHz NMR spectrometer (Agilent Technologies, California, USA). Peptide concentrations were about 5.0 mM in CD<sub>3</sub>CN. Chemical shifts were measured relative to internal trimethylsilane at 0.00 ppm. The protons were assigned using two dimensional correlated spectroscopy (2D-COSY) and rotating-frame Overhauser effect spectroscopy (ROESY; mixing time = 500 ms). Low-resolution mass spectra (LR-MS) were obtained by using matrix-assisted laser desorption ionization (MALDI-TOF) mass spectroscopy on a Bruker microflex LRF (Bruker, Massachusetts, USA).

#### Synthesis of Boc-D-Val(Thz)-OMe

Boc-D-Val(Thz)-OMe was prepared according to previous report (Y. Hamada *et. al., J. Org. Chem.*, 1987, **52**, 1252-1255) (Scheme S1). N-(*tert*-butoxycarbonyl)-D-valine (Boc-D-Val-OH) was first converted to the corresponding methyl ester by using methyl iodide in the presence of potassium hydrogen carbonate in N, N-dimethylformamide (DMF) at room temperature. The methyl ester was reduced with lithium chloride-sodium borohydride in tetrahydrofuran (THF) to give the amino alcohol derivative. Oxidation of the amino alcohol derivative was conveniently accomplished by the dimethyl sulfoxide (DMSO) oxidation using sulfur trioxide-pyridine complex ( $Py \cdot SO_3$ ) in the presence of trimethylamine (Et<sub>3</sub>N), giving the amino aldehyde derivative. Condensation of the amino aldehyde derivative with L-cysteine methyl ester (H-L-Cys-OMe) afforded the thiazolidine derivative as a mixture of C-2 epimers. Oxidation of the thiazolidine derivative to the Boc-D-Val(Thz)-OMe was performed with activated manganese dioxide (Sigma-Aldrich Co. Llc., St. Louis, USA) in benzene.



Scheme S1

#### General procedure for the condensation

Peptides were synthesized by a conventional liquid-phase method according to Scheme S2. The liner peptide were synthesized using 1-hydroxy-benzotiazole (HOBt) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan), and cyclization was conducted with benzotriazolyloxy-tris(pyrrolidino)-phosphonium hexafluorophosphate (PyBOP) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) in the presence of 4-dimethylaminopyridine (DMAP) (Nacalai tesque, Kyoto, Japan).



Xb; (Xaa,Yaa) = 2b; (Val,Chg), 3b; (Abu,Chg), 4b; (Ala,Chg) Xc; (Xaa,Yaa) = 2c; (Val,Phg), 3c; (Abu,Phg), 4c; (Ala,Phg)

Scheme S2

### Synthesis of oxazoline rings

The oxazoline (Oxz) rings were formed by reacting the Ile–*allo*-Thr moiety with bis(2methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor) (Fujifilm Wako Pure Chemical, Osaka, Japan) according to previous report (A. J. Phillips *et. al.*, *Org. Lett.*, 2000, **2**, 1165-1168) (Scheme S3).



Scheme S3

#### **Characterization of peptide 2b**

MALDI-TOF MS calcd for  $[C_{37}H_{52}N_8O_6S_2 + H]^+ = 769.36$ , found *m/z* 769.41. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta = 7.89$  (d, 1H, NH Val<sup>1</sup>, J = 6.6 Hz); 7.82 (d, 1H, NH Chg<sup>5</sup>, J = 7.2 Hz); 7.76 (s, 1H, H Thz<sup>4or8</sup>); 7.75 (s, 1H, H Thz<sup>4or8</sup>); 7.21 (d, 1H, NH D-Val<sup>3or7</sup>, J = 9.6 Hz); 7.20 (d, 1H, NH D-Val<sup>3or7</sup>, J = 10.2 Hz); 5.15 (dd, 1H, <sup>\array}</sup>H D-Val<sup>3or7</sup>, J = 10.2, 5.4 Hz); 5.14 (dd, 1H, <sup>\array</sup>H D-Val<sup>3or7</sup>, J = 10.2, 6.0 Hz); 4.83 (qd, 1H, <sup>\beta</sup>H Oxz<sup>2or6</sup>, J = 4.8, 6.6 Hz); 4.82 (qd, 1H, <sup>\beta</sup>H Oxz<sup>2or6</sup>, J = 4.8, 6.6 Hz); 4.60 (t, 1H, <sup>\array</sup>H Chg<sup>5</sup>, J = 7.2 Hz); 4.54 (t, 1H, <sup>\array</sup>H Val<sup>1</sup>, J = 6.6 Hz); 4.29 (dd., 1Hx2, <sup>\array</sup>H Oxz<sup>2,6</sup>, J = 4.8, 1.2 Hz); 2.32 (m, 1Hx2, <sup>\beta</sup>H D-Val<sup>3,7</sup>); 2.18 (oct., 1H, <sup>\beta</sup>H Val<sup>1</sup>, J = 6.6 Hz); 1.87 (m, 1H, <sup>\beta</sup>H Chg<sup>5</sup>); 1.68-0.89 (m, 10H, cyclohexyl CH<sub>2</sub> Chg<sup>5</sup>); 1.43 (d, 3H, <sup>\array</sup>H Oxz<sup>2or6</sup>, J = 6.6 Hz); 1.41 (d, 3H, <sup>\array</sup>H Oxz<sup>2or6</sup>, J = 6.6 Hz); 1.03 (d, 3Hx2, <sup>\array</sup>2H D-Val<sup>3,7</sup>, J = 6.6 Hz); 0.84 (d, 3Hx2, <sup>\array</sup>H Val<sup>1</sup>, J = 6.6 Hz).

### Characterization of peptide 3b

MALDI-TOF MS calcd for  $[C_{36}H_{50}N_8O_6S_2 + H]^+ = 755.34$ , found *m/z* 755.37. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta = 7.88$  (d, 1H, NH Abu<sup>1</sup>, J = 6.6 Hz); 7.77 (d, 1H, NH Chg<sup>5</sup>, J = 7.8 Hz); 7.72 (s, 1H, H Thz<sup>4or8</sup>); 7.71 (s, 1H, H Thz<sup>4or8</sup>); 7.21 (d, 1H, NH D-Val<sup>3</sup>, J = 10.2 Hz); 7.16 (d, 1H, NH D-Val<sup>7</sup>, J = 10.2 Hz); 5.16 (dd, 1H, <sup>\alpha</sup>H D-Val<sup>3</sup>, J = 10.2, 6.6 Hz); 5.13 (dd, 1H, <sup>\alpha</sup>H D-Val<sup>7</sup>, J = 10.2, 6.6 Hz); 4.84 (qd, 1H, <sup>\beta</sup>H Oxz<sup>6</sup>, J = 6.0, 4.8 Hz); 4.81 (qd, 1H, <sup>\beta</sup>H Oxz<sup>2</sup>, J = 6.6, 4.2 Hz); 4.74 (q, 1H, <sup>\alpha</sup>H Abu<sup>1</sup>, J = 6.6 Hz); 4.61 (t, 1H, <sup>\alpha</sup>H Chg<sup>5</sup>, J = 7.8 Hz); 4.30 (d, 1H, <sup>\alpha</sup>H Oxz<sup>2</sup>, J = 4.2 Hz); 4.28 (d, 1H, <sup>\alpha</sup>H Oxz<sup>6</sup>, J = 4.8 Hz); 2.33 (oct., 1Hx2, <sup>\beta</sup>H D-Val<sup>3,7</sup>, J = 6.6 Hz); 1.95 (m, 1H, <sup>\beta</sup>12H Abu<sup>1</sup>); 1.82 (m, 1H, <sup>\beta</sup>13H Abu<sup>1</sup>); 1.89 (m, 1H, <sup>\beta</sup>H Chg<sup>5</sup>); 1.68-0.94 (m, 10H, cyclohexyl CH<sub>2</sub>, Chg<sup>5</sup>); 1.43 (d, 3H, <sup>\gary</sup>H Oxz<sup>2</sup>, J = 6.6 Hz); 1.40 (d, 3H, <sup>\gary</sup>H Oxz<sup>6</sup>, J = 6.0 Hz); 1.12 (d, 3H, <sup>\gary</sup>1H D-Val<sup>3</sup>, J = 6.6 Hz); 1.11 (d, 3H, <sup>\gary</sup>1H D-Val<sup>7</sup>, J = 6.6 Hz); 1.04 (d, 3Hx2, <sup>\gary</sup>2H D-Val<sup>3,7</sup>, J = 6.6 Hz); 0.73 (t, 3H, <sup>\gary</sup>H Abu<sup>1</sup>, J = 7.8 Hz).

#### **Characterization of peptide 4b**

MALDI-TOF MS calcd for  $[C_{35}H_{50}N_8O_6S_2 + H]^+ = 741.32$ , found *m/z* 741.21. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta = 7.80$  (d, 1H, NH Ala<sup>1</sup>, J = 6.6 Hz); 7.67 (d, 1H, NH Chg<sup>5</sup>, J = 8.4 Hz); 7.63 (s, 1Hx2, H Thz<sup>4,8</sup>); 7.22 (d, 1H, NH D-Val<sup>3</sup>, J = 10.5 Hz); 7.13 (d, 1H, NH D-Val<sup>7</sup>, J = 10.5 Hz); 5.17 (dd, 1H,  $^{\alpha}$ H D-Val<sup>3</sup>, J = 10.5, 4.2 Hz); 5.13 (dd, 1H,  $^{\alpha}$ H D-Val<sup>7</sup>, J = 10.5, 5.4 Hz); 4.87 (qd, 1H,  $^{\beta}$ H Oxz<sup>6</sup>, J = 6.6, 4.2 Hz); 4.83 (quint., 1H,  $^{\alpha}$ H Ala<sup>1</sup>, J = 6.6 Hz); 4.79 (qd, 1H,  $^{\beta}$ H Oxz<sup>2</sup>, J = 6.0, 4.2 Hz); 4.61 (t, 1H,  $^{\alpha}$ H Chg<sup>5</sup>, J = 8.4 Hz); 4.30 (dd, 1H,  $^{\alpha}$ H Oxz<sup>2</sup>, J = 4.2, 0.6 Hz); 4.29 (dd, 1H,  $^{\alpha}$ H Oxz<sup>6</sup>, J = 4.2, 0.6 Hz); 2.34 (m, 1Hx2,  $^{\beta}$ H D-Val<sup>3,7</sup>); 1.94 (m, 1H,  $^{\beta}$ H Chg<sup>5</sup>); 1.71-1.03 (m, 10H, cyclohexyl CH<sub>2</sub>, Chg<sup>5</sup>); 1.44 (d, 3H,  $^{\beta}$ H Ala<sup>1</sup>, J = 6.6 Hz); 1.43 (d, 3H,  $^{\gamma}$ H Oxz<sup>2</sup>, J = 6.0 Hz); 1.40 (d, 3H,  $^{\gamma}$ H Oxz<sup>6</sup>, J = 6.6 Hz); 1.11 (d, 3H,  $^{\gamma}$ <sup>1</sup>H D-Val<sup>3</sup>, J = 6.6 Hz); 1.10 (d, 3H,  $^{\gamma}$ <sup>1</sup>H D-Val<sup>7</sup>, J = 6.6 Hz); 1.06 (d, 3Hx2,  $^{\gamma}$ <sup>2</sup>H D-Val<sup>3,7</sup>, J = 6.6 Hz).

### **Characterization of peptide 2c**

MALDI-TOF MS calcd for  $[C_{37}H_{46}N_8O_6S_2 + H]^+ = 763.31$ , found *m/z* 763.37. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta = 8.58$  (d, 1H, NH Phg<sup>5</sup>, J = 7.8 Hz); 8.09 (s, 1H, H Thz<sup>4or8</sup>); 8.05 (d, 1H, NH Val<sup>1</sup>, J = 8.4 Hz); 7.94 (s, 1H, H Thz<sup>4or8</sup>); 7.55 (d, 1H, NH D-Val<sup>7</sup>, J = 10.2 Hz); 7.26 (d, 1H, NH D-Val<sup>3</sup>, J = 10.2 Hz); 7.21-7.17 (m, 3H, ArH Phg<sup>5</sup>); 7.06-7.04 (m, 2H, ArH Phg<sup>5</sup>); 5.76 (dd,  $^{\alpha}$ H Phg<sup>5</sup>, J = 7.8, 1.8 Hz); 5.20 (dd, 1H,  $^{\alpha}$ H D-Val<sup>7</sup>, J = 10.0, 6.6 Hz); 5.09 (dd, 1H,  $^{\alpha}$ H D-Val<sup>3</sup>, J = 10.2, 8.4 Hz); 4.72 (quint., 1H,  $^{\beta}$ H Oxz<sup>2</sup>, J = 6.0 Hz); 4.69 (quint., 1H,  $^{\beta}$ H Oxz<sup>6</sup>, J = 6.0 Hz); 4.62 (ddd, 1H,  $^{\alpha}$ H Val<sup>1</sup>, J = 8.4, 3.6, 1.8 Hz); 4.40 (dd, 1H,  $^{\alpha}$ H Oxz<sup>6</sup>, J = 6.0, 1.8 Hz); 4.24 (dd, 1H,  $^{\alpha}$ H Oxz<sup>2</sup>, J = 6.0, 1.8 Hz); 2.36 (m, 1H,  $^{\beta}$ H D-Val<sup>3</sup>); 2.31 (oct., 1H,  $^{\beta}$ H D-Val<sup>7</sup>, J = 6.6 Hz); 1.78 (sept.d, 1H,  $^{\beta}$ H Val<sup>1</sup>, J = 6.6, 3.6 Hz); 1.43 (d, 3H,  $^{\gamma}$ H D-Val<sup>3</sup>, J = 6.0 Hz); 0.99 (d, 3H,  $^{\gamma}$ H D-Val<sup>7</sup>, J = 6.6 Hz); 0.96 (d, 3H,  $^{\gamma}$ <sup>1</sup>H Val<sup>1</sup>, J = 6.6 Hz); 0.32 (d, 3H,  $^{\gamma}$ <sup>1</sup>H Val<sup>1</sup>, J = 6.6 Hz); 0.29 (d, 3H,  $^{\gamma}$ <sup>1</sup>H Val<sup>1</sup>, J = 6.6 Hz).

#### **Characterization of peptide 3c**

MALDI-TOF MS calcd for  $[C_{36}H_{44}N_8O_6S_2 + H]^+ = 749.29$ , found *m*/*z* 749.36. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta = 8.50$  (d, 1H, NH Phg<sup>5</sup>, J = 7.8 Hz); 8.09 (d, 1H, NH Abu<sup>1</sup>, J = 7.8 Hz); 8.06 (s, 1H, H Thz<sup>4or8</sup>); 7.91 (s, 1H, H Thz<sup>4or8</sup>); 7.50 (d, 1H, NH D-Val<sup>7</sup>, J = 9.6 Hz); 7.25 (d, 1H, NH D-Val<sup>3</sup>, J = 10.2 Hz); 7.22-7.17 (m, 3H, ArH Phg<sup>5</sup>); 7.10-7.07 (m, 2H, ArH Phg<sup>5</sup>); 5.79 (dd, 1H,  $\alpha$ H Phg<sup>5</sup>, J = 7.8, 1.8 Hz); 5.16 (dd, 1H,  $\alpha$ H D-Val<sup>7</sup>, J = 9.6, 7.8 Hz); 5.09 (dd, 1H,  $\alpha$ H D-Val<sup>3</sup>, J = 10.2, 8.4 Hz); 4.75 (m, 1H,  $\alpha$ H Abu<sup>1</sup>); 4.70 (quint., 1H,  $\beta$ H Oxz<sup>6</sup>, J = 6.0 Hz); 4.68 (quint., 1H,  $\beta$ H Oxz<sup>2</sup>, J = 6.0 Hz); 4.39 (dd, 1H,  $\alpha$ H Oxz<sup>6</sup>, J = 6.0 Hz); 1.41 (m, 1H, Abu<sup>1</sup>); 1.29 (d, 3H,  $\gamma$ H Oxz<sup>2</sup>, J = 6.0 Hz); 1.16 (d, 3H,  $\gamma$ <sup>1</sup>H D-Val<sup>7</sup>, J = 6.6 Hz); 1.14 (d, 3H,  $\gamma$ <sup>1</sup>H D-Val<sup>3</sup>, J = 6.6 Hz); 1.00 (d, 3H,  $\gamma$ <sup>2</sup>H D-Val<sup>7</sup>, J = 6.6 Hz); -0.02 (t, 3H,  $\gamma$ H Abu<sup>1</sup>, J = 7.2 Hz).

### **Characterization of peptide 4c**

MALDI-TOF MS calcd for  $[C_{35}H_{42}N_8O_6S_2 + H]^+ = 735.28$ , found *m/z* 735.36. <sup>1</sup>H NMR (600 MHz, CD<sub>3</sub>CN, 298 K)  $\delta$  = 8.44 (d, 1H, NH Phg<sup>5</sup>, J = 8.4 Hz); 7.99 (d, 1H, NH Ala<sup>1</sup>, J = 6.6 Hz); 7.99 (s, 1H, H Thz<sup>4or8</sup>); 7.92 (s, 1H, H Thz<sup>4or8</sup>); 7.54 (d, 1H, NH D-Val<sup>7</sup>, J = 10.2 Hz); 7.29 (d, 1H, NH D-Val<sup>3</sup>, J = 9.6 Hz); 7.26-7.23 (m, 3H, ArH Phg<sup>5</sup>); 7.17-7.14 (m, 2H, ArH Phg<sup>5</sup>); 5.91 (dd, 1H,  $^{\alpha}$ H Phg<sup>5</sup>, J = 8.4, 1.2 Hz); 5.19 (dd, 1H,  $^{\alpha}$ H D-Val<sup>7</sup>, J = 10.2, 6.6 Hz); 5.10 (dd, 1H,  $^{\alpha}$ H D-Val<sup>3</sup>, J = 9.6, 6.6 Hz); 4.74 (quint., 1H,  $^{\beta}$ H Oxz<sup>6</sup>, J = 6.0 Hz); 4.72 (quint.d, 1H,  $^{\alpha}$ H Ala<sup>1</sup>, J = 6.6, 1.2 Hz); 4.60 (quint., 1H,  $^{\beta}$ H Oxz<sup>2</sup>, J = 6.0 Hz); 4.39 (dd, 1H,  $^{\alpha}$ H Oxz<sup>6</sup>, J = 6.0, 1.2 Hz); 4.20 (dd, 1H,  $^{\alpha}$ H Oxz<sup>2</sup>, J = 6.0, 1.2 Hz); 1.21 (d, 3H,  $^{\gamma}$ H Oxz<sup>2</sup>, J = 6.0 Hz); 1.13 (d, 3H,  $^{\gamma}$ H D-Val<sup>7</sup>, J = 6.6 Hz); 1.11 (d, 3H,  $^{\gamma}$ H D-Val<sup>3</sup>, J = 6.6 Hz); 1.01 (d, 3H,  $^{\gamma}$ Ph D-Val<sup>7</sup>, J = 6.6 Hz); 0.98 (d, 3H,  $^{\gamma}$ Ph D-Val<sup>3</sup>, J = 6.6 Hz); 0.86 (d, 3H,  $^{\beta}$ H Ala<sup>1</sup>, J = 6.6 Hz).

# <sup>1</sup>H NMR spectra of peptides 2b



**Fig. S1** 1D <sup>1</sup>H NMR spectrum of peptide **2b** in CD<sub>3</sub>CN at 298 K.



**Fig. S2** 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide **2b** in CD<sub>3</sub>CN at 298 K.



**Fig. S3** 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide **2b** in CD<sub>3</sub>CN at 298 K.

# <sup>1</sup>H NMR spectra of peptides 3b



**Fig. S4** 1D <sup>1</sup>H NMR spectrum of peptide **3b** in CD<sub>3</sub>CN at 298 K.



**Fig. S5** 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide **3b** in CD<sub>3</sub>CN at 298 K.



Fig. S6 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide **3b** in CD<sub>3</sub>CN at 298 K.

# <sup>1</sup>H NMR spectra of peptides 4b



Fig. S7 1D <sup>1</sup>H NMR spectrum of peptide 4b in CD<sub>3</sub>CN at 298 K.



**Fig. S8** 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide **4b** in CD<sub>3</sub>CN at 298 K.



Fig. S9 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide 4b in CD<sub>3</sub>CN at 298 K.

# <sup>1</sup>H NMR spectra of peptides 2c



Fig. S10 1D <sup>1</sup>H NMR spectrum of peptide 2c in CD<sub>3</sub>CN at 298 K.



**Fig. S11** 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide **2c** in CD<sub>3</sub>CN at 298 K.



Fig. S12 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide 2c in CD<sub>3</sub>CN at 298 K.

## <sup>1</sup>H NMR spectra of peptides 3c



Fig. S13 1D <sup>1</sup>H NMR spectrum of peptide 3c in CD<sub>3</sub>CN at 298 K.



Fig. S14 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide 3c in CD<sub>3</sub>CN at 298 K.



Fig. S15 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide 3c in CD<sub>3</sub>CN at 298 K.

# <sup>1</sup>H NMR spectra of peptides 4c



Fig. S16 1D <sup>1</sup>H NMR spectrum of peptide 4c in CD<sub>3</sub>CN at 298 K.



**Fig. S17** 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of peptide **4c** in CD<sub>3</sub>CN at 298 K.



**Fig. S18** 2D <sup>1</sup>H-<sup>1</sup>H ROESY spectrum of peptide **4c** in CD<sub>3</sub>CN at 298 K.

## Crystallographic data for peptides 2b and 2c.

| Peptide                                 | 2b                               | 2c                               |
|-----------------------------------------|----------------------------------|----------------------------------|
| Formula                                 | $C_{37}H_{52}N_8O_6S_2,$         | $C_{38}H_{47}N_8O_6S_2,$         |
|                                         | C <sub>4</sub> H <sub>9</sub> NO | C <sub>4</sub> H <sub>9</sub> NO |
| Formula Weight                          | 856.11                           | 863.08                           |
| Cell System                             | monoclinic                       | monoclinic                       |
| Space Group                             | P2 <sub>1</sub>                  | C2                               |
| <i>a</i> , Å                            | 12.012(2)                        | 18.269(6)                        |
| <i>b</i> , Å                            | 12.909(3)                        | 12.967(4)                        |
| <i>c</i> , Å                            | 14.885(3)                        | 11.641(4)                        |
| $\alpha$ , deg                          | 90.00                            | 90.00                            |
| β, deg                                  | 97.85(3)                         | 123.754(4)                       |
| γ, deg                                  | 90.00                            | 90.00                            |
| Volume, Å <sup>3</sup>                  | 2286.5(8)                        | 2292.9(13)                       |
| Ζ                                       | 2                                | 2                                |
| Dc, g cm <sup>-3</sup>                  | 1.243                            | 1.250                            |
| <i>F</i> (000)                          | 916                              | 918                              |
| $\mu$ , mm <sup>-1</sup>                | 1.518(Cu Kα)                     | 0.173 (Μο Κα)                    |
| Wavelength, Å                           | 1.54184                          | 0.71073                          |
| No. of reflections (obs)                | 8579                             | 3907                             |
| $R_{\rm INT}$                           | 0.0818                           | 0.0362                           |
| $\theta_{\max}$ , deg                   | 70.07                            | 25.02                            |
| No. of reflections $(I \ge 2\sigma(I))$ | 8214                             | 3055                             |
| Flack parameter                         | 0.005 (18)                       | -0.3(3)                          |
| <i>R</i> 1                              | 0.0644                           | 0.1071                           |
| wR                                      | 0.1733                           | 0.2655                           |
| Goodness of fit                         | 0.744                            | 1.141                            |
| $(\Delta/\sigma)_{\rm max}$             | 0.002                            | 0.017                            |
| Fraction for $\theta_{\max}$            | 1.000                            | 0.997                            |
| $\Delta  ho_{max}$ , e Å <sup>-3</sup>  | 0.959                            | 0.660                            |
| $\Delta  ho_{min}, e \ { m \AA}^{-3}$   | -0.334                           | -0.691                           |
| CCDC Number                             | 2191404                          | 2191405                          |

**Table S1.** Crystal and experimental data for 2b and 2c.

### The CH $\cdots\pi$ contacts within the crystal structures of 1c and 2c

The distances between the side chains of Xaa<sup>1</sup> and Phg<sup>5</sup> were estimated by surveying the CH… $\pi$  contacts for the six-membered  $\pi$ -system, as described by Umezawa *et al.* (Y. Umezawa *et al., Bull. Chem. Soc. Jpn.*, 1998, **71**, 1207-1213) (Fig. S19). The distance between a C-H hydrogen atom and the  $\pi$ -plane, the distance between H and the line C<sup>1</sup>-C<sup>2</sup>, and the H/C<sup>1</sup> interatomic distance are defined as  $D_{pln}$ ,  $D_{lin}$  and  $D_{atm}$ , respectively. These distance parameters ( $D_{pln}$ ,  $D_{lin}$  and  $D_{atm}$ ) correspond to regions 1, 2 and 3, respectively. A C-H hydrogen atom is positioned above the  $\pi$ -plane in region 1 or at a position where it is able to contact the  $\pi$ -orbital in regions 2 and 3. An alkyl group can interact with the  $\pi$ -group in regions where the hydrogen atom is above the  $\pi$ -plane but slightly offset, outside the ring. The dihedral angles determined by the  $\pi$ -plane, plane H-C<sup>1</sup>-C<sup>2</sup> and angle  $\angle$ H-X-C<sup>1</sup> (X=C, O, etc.) are defined as  $\omega$  and  $\theta$ , respectively. The distances from the H atoms of the Xaa<sup>1</sup> alkyl side chain to the  $\pi$ -orbital of the Phg<sup>5</sup> residue in the crystal structures of **1c** and **2c** are listed in Table 2.



**Fig. S19** Method for surveying CH··· $\pi$  contacts in a six-membered  $\pi$ -system (Y. Umezawa *et al.*, *Bull. Chem. Soc. Jpn.*, 1998, **71**, 1207-1213). (a) O: center of the plane. C<sup>1</sup> and C<sup>2</sup>: nearest and second nearest sp<sup>2</sup>-carbons to H.  $\omega$ : dihedral angle defined by the C<sup>1</sup>OC<sup>2</sup> and HC<sup>1</sup>C<sup>2</sup> planes.  $\theta$ :  $\angle$ HXC<sup>1</sup>.  $D_{pln}$ : H/ $\pi$ -plane distance (H/I).  $D_{atm}$ : interatomic distance (H/C<sup>1</sup>).  $D_{lin}$ : distance between H and line C<sup>1</sup>C<sup>2</sup> (H/J). (b) 1: region where H is above the aromatic ring. 2 and 3: regions where H is outside region 1 but may interact with the  $\pi$ -orbitals.  $D_{pln} < D_{max}$ ,  $\theta < 60^\circ$ ,  $|\omega| < 90^\circ$  for region 1;  $D_{lin} > D_{max}$ ,  $\theta < 60^\circ$ ,  $90^\circ < |\omega| < 130^\circ$  for region 2; and  $D_{atm} < D_{max}$ ,  $\theta < 60^\circ$ ,  $50^\circ < \phi < 90^\circ$  for region 3 ( $\phi$  : HC<sup>1</sup>I). ( $\theta$ 

should be smaller than 60° to avoid contact of atom X with C<sup>1</sup>).  $D_{\text{max}}$ : cutoff value in every region. **Table S2.** The distances from the H atoms of Xaa<sup>1</sup> side chains to the  $\pi$ -orbital of the Phg<sup>5</sup> residue and angle parameters ( $\theta$  and  $\omega$ ) within the crystal structures of **1c** and **2c** were estimated by surveying the CH··· $\pi$  contacts in a six-membered  $\pi$ -system.

|                   | $\mathbf{lc}^{a}$ (Ile <sup>1</sup> ) |                   | 2c     | (Val <sup>1</sup> ) |                   |
|-------------------|---------------------------------------|-------------------|--------|---------------------|-------------------|
|                   | βH                                    | $\gamma^2 H$      | δΗ     | βH                  | $\gamma^1 H$      |
| $\theta(\degree)$ | 33.8                                  | 21.3              | 59.0   | 34.8                | 33.6              |
| $\omega(\degree)$ | 115.6                                 | 108.7             | 89.2   | 119.7               | 129.2             |
| Region            | 2                                     | 2                 | 1      | 2                   | 2                 |
| Distance (Å)      | 3.71 <sup>b</sup>                     | 3.17 <sup>b</sup> | 4.52 ° | 4.00 <sup>b</sup>   | 3.75 <sup>b</sup> |

<sup>a</sup> These parameters for **1c** are estimated from a previously reported crystal structure (A. Asano *et al.*, *Bioorg. Med. Chem.*, 2011, **19**, 3372–3377).

<sup>b</sup> These distance parameters determined as  $D_{\text{lin}}$  correspond to region 2.

<sup>c</sup> This distance parameter determined as  $D_{pln}$  corresponds to region 1.

### Temperature coefficients of protons of Xaa<sup>1</sup> alkyl side chain in Xc peptides.

| T (K)            | δ lle <sup>1</sup> βH (ppm) | $\delta \operatorname{lle}^1 \gamma^{11} \operatorname{H} (\text{ppm})$ | $\delta \operatorname{lle}^1 \gamma^{12} \operatorname{H} (\mathrm{ppm})$ | $\delta \operatorname{lle}^1 \gamma^2 H (ppm)$ | $\delta \operatorname{lle}^1 \delta H (ppm)$ |
|------------------|-----------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|
| 273              | ND                          | 0.963                                                                   | 0.664                                                                     | 0.120                                          | 0.346                                        |
| 283              | ND                          | 0.960                                                                   | 0.664                                                                     | 0.145                                          | 0.355                                        |
| 293              | ND                          | 0.972                                                                   | 0.672                                                                     | 0.167                                          | 0.365                                        |
| 303              | 1.457                       | 0.984                                                                   | 0.682                                                                     | 0.189                                          | 0.376                                        |
| 313              | 1.474                       | 0.981                                                                   | 0.692                                                                     | 0.209                                          | 0.387                                        |
| 323              | 1.487                       | 1.009                                                                   | 0.710                                                                     | 0.228                                          | 0.399                                        |
| 333              | 1.508                       | 1.022                                                                   | 0.717                                                                     | 0.246                                          | 0.412                                        |
| Δδ/ΔT<br>(ppb/K) | 1.7                         | 1.1                                                                     | 1.0                                                                       | 2.1                                            | 1.1                                          |

Table S3. Temperature dependences of chemical shifts for alkyl protons of Ile<sup>1</sup> side chain of 1c.

Table S4. Temperature dependences of chemical shifts for alkyl protons of Val<sup>1</sup> side chain of 2c.

| T (K)                   | $\delta$ Val <sup>1</sup> βH (ppm) | $\delta$ Val <sup>1</sup> $\gamma$ <sup>1</sup> H(ppm) | $\delta$ Val <sup>1</sup> $\gamma^2$ H (ppm) |
|-------------------------|------------------------------------|--------------------------------------------------------|----------------------------------------------|
| 273                     | 1.747                              | 0.288                                                  | 0.260                                        |
| 283                     | 1.759                              | 0.301                                                  | 0.274                                        |
| 293                     | 1.771                              | 0.314                                                  | 0.287                                        |
| 303                     | 1.782                              | 0.327                                                  | 0.300                                        |
| 313                     | 1.792                              | 0.338                                                  | 0.314                                        |
| 323                     | 1.802                              | 0.350                                                  | 0.329                                        |
| 333                     | 1.812                              | 0.362                                                  | 0.344                                        |
| $\Delta\delta/\Delta T$ | 1 1                                | 1.2                                                    | 1 /                                          |
| (ppb/K)                 | 1.1                                | 1.2                                                    | 1.4                                          |

Table S5. Temperature dependences of chemical shifts for alkyl protons of Abu<sup>1</sup> side chain of 3c.

| T (K)                      | δ Abu <sup>1</sup> βH (ppm) | $\delta \text{ Abu}^1 \gamma \text{H} (\text{ppm})$ |
|----------------------------|-----------------------------|-----------------------------------------------------|
| 273                        | 1.394                       | -0.067                                              |
| 283                        | 1.404                       | -0.047                                              |
| 293                        | 1.413                       | -0.029                                              |
| 303                        | 1.422                       | -0.009                                              |
| 313                        | 1.432                       | 0.010                                               |
| 323                        | 1.440                       | 0.030                                               |
| 333                        | 1.448                       | 0.051                                               |
| $\Delta \delta / \Delta T$ | 0.0                         | 2.0                                                 |
| (ppb/K)                    | 0.9                         | 2.0                                                 |

Table S6. Temperature dependences of chemical shifts for alkyl protons of Ala<sup>1</sup> side chain of 4c.

| T (K)                      | $\delta$ Ala <sup>1</sup> βH (ppm) |
|----------------------------|------------------------------------|
| 273                        | 0.839                              |
| 283                        | 0.848                              |
| 293                        | 0.855                              |
| 303                        | 0.862                              |
| 313                        | 0.869                              |
| 323                        | 0.877                              |
| 333                        | 0.886                              |
| $\Delta \delta / \Delta T$ | 0.8                                |
| (ppb/K)                    | 0.0                                |

| Т (К) | Thz H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|-------|-------------|-------|--------------------------------------|
| 273   | 7.67        | 1.284 | -567                                 |
| 283   | 7.70        | 1.090 | -204                                 |
| 293   | 7.74        | 0.902 | 250                                  |
| 303   | 7.77        | 0.764 | 678                                  |
| 313   | 7.80        | 0.652 | 1114                                 |
| 323   | 7.82        | 0.560 | 1559                                 |
| 333   | 7.85        | 0.484 | 2006                                 |

Table S7. Equilibrium parameters of peptide 2b.

\*\* $\Delta G^{\rm o} = -\operatorname{RTln} K$ 



Fig. S20 van't Hoff plot of peptide 2b.

Table S8. Thermodynamic parameters of peptide 2b.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K}  (\text{kJ-mol}^{-1})^{*}$ |
|--------------------------------------|---------------------------------|-------------------------------------------------|
| -12.39                               | -43.16                          | 0.47                                            |

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ 

| Т (К) | Thz H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|-------|-------------|-------|--------------------------------------|
| 273   | 7.64        | 1.561 | -1010                                |
| 283   | 7.67        | 1.316 | -646                                 |
| 293   | 7.70        | 1.123 | -283                                 |
| 303   | 7.73        | 0.960 | 102                                  |
| 313   | 7.76        | 0.820 | 515                                  |
| 323   | 7.78        | 0.707 | 931                                  |
| 333   | 7.81        | 0.612 | 1359                                 |

Table S9. Equilibrium parameters of peptide 3b.

\*\* $\Delta G^{o} = - \operatorname{RTln} K$ 



Fig. S21 van't Hoff plot of peptide 3b.

Table S10. Thermodynamic parameters of peptide 3b.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K} (kJ \cdot mol^{-1})^{*}$ |
|--------------------------------------|---------------------------------|-----------------------------------------------|
| -11.78                               | -39.35                          | -0.06                                         |

| <i>T</i> (K) | Thz <sup>4or8</sup> H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|--------------|-----------------------------|-------|--------------------------------------|
| 273          | 7.55                        | 2.795 | -2333                                |
| 283          | 7.58                        | 2.217 | -1874                                |
| 293          | 7.62                        | 1.782 | -1407                                |
| 298          | 7.63                        | 1.624 | -1202                                |
| 303          | 7.65                        | 1.442 | -923                                 |
| 313          | 7.69                        | 1.173 | -416                                 |
| 323          | 7.73                        | 0.968 | 87                                   |
| 333          | 7.76                        | 0.805 | 601                                  |

Table S11. Equilibrium parameters of peptide 4b.

\*\* $\Delta G^{o} = - \operatorname{RTln} K$ 



Fig. S22 van't Hoff plot of peptide 4b.

Table S12. Thermodynamic parameters of peptide 4b.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K} (kJ \cdot mol^{-1})^*$ |
|--------------------------------------|---------------------------------|---------------------------------------------|
| -15.72                               | -48.91                          | -1.15                                       |

| <i>T</i> (K) | Thz H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|--------------|-------------|-------|--------------------------------------|
| 273          | 8.00        | 0.137 | 4516                                 |
| 283          | 8.01        | 0.128 | 4836                                 |
| 293          | 8.01        | 0.120 | 5175                                 |
| 303          | 8.02        | 0.111 | 5535                                 |
| 313          | 8.02        | 0.104 | 5899                                 |
| 323          | 8.03        | 0.096 | 6285                                 |
| 333          | 8.03        | 0.089 | 6696                                 |

Table S13. Equilibrium parameters of peptide 2c.

\*\* $\Delta G^{\circ} = - \operatorname{RTln} K$ 



Fig. S23 van't Hoff plot of peptide 2c.

Table S14. Thermodynamic parameters of peptide 2c.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K}  (\text{kJ-mol}^{-1})^{*}$ |
|--------------------------------------|---------------------------------|-------------------------------------------------|
| -5.38                                | -36.12                          | 5.38                                            |

| <i>T</i> (K) | Thz H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|--------------|-------------|-------|--------------------------------------|
| 273          | 7.97        | 0.189 | 3784                                 |
| 283          | 7.98        | 0.177 | 4069                                 |
| 293          | 7.99        | 0.165 | 4384                                 |
| 303          | 7.99        | 0.154 | 4720                                 |
| 313          | 8.00        | 0.141 | 5096                                 |
| 323          | 8.01        | 0.130 | 5484                                 |
| 333          | 8.01        | 0.120 | 5881                                 |

 Table S15. Equilibrium parameters of peptide 3c.

\*\* $\Delta G^{o} = - \operatorname{RTln} K$ 



Fig. S24 van't Hoff plot of peptide 3c.

Table S16. Thermodynamic parameters of peptide 3c.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K}  (\text{kJ-mol}^{-1})^{*}$ |
|--------------------------------------|---------------------------------|-------------------------------------------------|
| -5.79                                | -34.88                          | 4.60                                            |

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ 

| <i>T</i> (K) | Thz <sup>4or8</sup> H (ppm) | K*    | $\Delta G^0 (J \cdot mol^{-1})^{**}$ |
|--------------|-----------------------------|-------|--------------------------------------|
| 273          | 7.91                        | 0.317 | 2610                                 |
| 283          | 7.93                        | 0.278 | 3011                                 |
| 293          | 7.95                        | 0.244 | 3439                                 |
| 298          | 7.95                        | 0.232 | 3617                                 |
| 303          | 7.96                        | 0.212 | 3906                                 |
| 313          | 7.98                        | 0.184 | 4405                                 |
| 323          | 7.99                        | 0.158 | 4954                                 |
| 333          | 8.00                        | 0.138 | 5491                                 |

Table S17. Equilibrium parameters of peptide 4c.

\*\* $\Delta G^{o} = - \operatorname{RTln} K$ 

Fig. S25 van't Hoff plot of peptide 4c.



Table S18. Thermodynamic parameters of peptide 4c.

| $\Delta H^0$ (kJ•mol <sup>-1</sup> ) | $\Delta S^0 (J \cdot mol^{-1})$ | $\Delta G^{0}_{298K} (kJ \cdot mol^{-1})^{*}$ |
|--------------------------------------|---------------------------------|-----------------------------------------------|
| -10.58                               | -47.97                          | 3.72                                          |

### Cytotoxicities of peptides toward HL-60 cell.



**Fig. S26** Bar graph representation of cell growth data with different peptide concentration. \*These data are taken from a previous report (A. Asano *et al.*, *Bioorg. Med. Chem.*, 2011,19, 3372–3377).

Chemical structures of *d*ASC and T3ASC as reference peptides.



**Fig. S27** Chemical structures of T3ASC (A. Asano *et al.*, *J. Pept. Sci.*, 2018, e3120) and *d*ASC (A. Asano *et al.*, *Biopolymers*, 2001, **58**, 295–304). T3ASC and *d*ASC were used as reference peptides to provide reference chemical shifts for the fully square and folded forms, respectively.