Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Reactions of cobalt(II) chloride and cobalt(II) acetate with hemisalen-type imines: ligand transformation, oxidation of cobalt and complex formation. Preliminary study on the cytotoxicity of Co(II) and Co(III) hemisalen complexes

Magdalena Siedzielnik^a*, Monika Pawłowska^b, Mateusz Daśko^a, Hubert Kleinschmidt^a and Anna Dołęga^a

Department of Inorganic Chemistry, Chemical Faculty,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
Department of Pharmaceutical Technology and Biochemistry, Chemical Faculty,
Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Supporting Information

Table of Contents

- 1. Crystallographic details and crystal structure of C1B and C2
- 2. Experimental and theoretical structure of C3
- 3. The plausible mechanism of the self-cyclization reaction of HL1
- 4. NMR spectra ¹H, ¹³C{¹H} of C1A, C1B and NMR spectra ¹H of HL1-HL5
- 5. FT-IR spectra of C1A-C7
- 6. TLC of **C5**

1. Crystallographic details and crystal structures of C1B and C2

Table 1S.	Crystallogra	phic data for	compounds C1A	A, C1B, C2	2, C3, and C5-C7
				, ,	, -, -

Compound	C1A	C1B	C2	C3	C5	C6	C7
Empirical formula	$C_{21}H_{18}N_2O_4$	$C_{22}H_{20}N_2O_4$	$C_{10}H_{13}CI_3CoN_4$	$C_{26}H_{22}CoN_4O_4$	$C_{28}H_{26}CoN_4O_4$	$C_{52}H_{58}Co_{3}N_{4}O_{16}$	C ₃₅ H ₄₄ CoN ₃ O ₈
Formula weight	362.37	376.4	354.52	513.4	541.46	1171.81	693.66
Wavelength [Å]	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
T [K]	120	120	120	120	120	120	120
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	Cc	P2 ₁ /n	P2 ₁ /c	P21/n	P21/c
<i>a</i> (Å)	9.2880(5)	8.9262(4)	12.9563(11)	12.5620(10)	13.6519(4)	10.9556(8)	11.359(3)
b (Å)	9.6491(5)	9.3131(4)	8.0625(4)	15.3891(8)	13.7225(5)	20.9941(12)	11.974(7)
<i>c</i> (Å)	10.2198(5)	11.4785(5)	14.0076(17)	12.9050(12)	26.1260(8)	11.8225(9)	24.537(7)
α (°)	66.574(4)	87.538(4)	90.00	90.00	90.00	90.00	90.00
β (°)	82.570(4)	85.441(4)	106.127(8)	114.666(7)	90.899(3)	97.027(6)	99.62(2)
γ (°)	84.516(4)	68.748(3)	90.00	90.00	90.00	90.00	90.00
V (Å ³)	832.37(8)	886.41(7)	1405.7(2)	2267.1(4)	4893.8(3)	2698.8(3)	3291(2)
Ζ	2	2	4	4	4	2	4
<i>D</i> _c (g·cm⁻³)	1.446	1.41	1.675	1.504	1.47	1.442	1.4
µ(mm⁻¹)	0.101	0.10	1.777	0.80	0.745	0.98	0.579
F (000)	380	396	716	1060	2248	1214	1464
Reflection collected	10107	12586	11141	18864	52634	28607	26441
Unique reflections	4447	4767	3605	6107	13225	7312	8840
Parameters	246	256	183	318	675	346	441
R _{int}	0.026	0.018	0.027	0.030	0.052	0.053	0.079
GOOF	1.084	1.04	1.048	1.062	1.027	1.034	0.997
$R_1[I > 2\sigma(I)]$	0.037	0.038	0.026	0.031	0.056	0.057	0.057
wR ₂ (all data)	0.1046	0.1015	0.069	0.081	0.129	0.161	0.1687
CCDC numbers	2194288	2237609	2194289	2194290	2194291	2212180	2194292

Figure 1S. Molecular structure of **C1B** with the numbering scheme; important bond lengths [Å]: N1–C17 1.4074(12), N1–C7 1.4338(12), N1–C15 1.4556(12); important angles [°]: C17–N1–C7 120.76(8), C17–N1–C15 117.37(8), C7–N1–C15 108.74(7)

Figure 25. Molecular structure of **C2** with the numbering scheme; important bond lengths [Å]: Co1—N1 2.031(2), Co1—Cl1 2.2719(8), Co1—Cl2 2.2644(7), Co1—Cl3 2.2626(8); important angles [°]: N1—Co1—Cl3 113.81(7), N1—Co1—Cl2 109.13(7), Cl3—Co1—Cl2 107.97(3), N1—Co1—Cl1 104.86(7), Cl3—Co1—Cl1 108.52(3), Cl2—Co1—Cl1 112.64(3)

2. Experimental and theoretical structure of C3

For the details of the DFT calculations please see the ref. 39 M. Siedzielnik, D. A. Pantazis, J. Bruniecki, K. Kaniewska-Laskowska and A. Dołęga, Crystals (Basel), 2021, **11**, 1–15.

Table 2S X-ray experimental and DFT calculated geometrical parameters of complex C3

	Experimental values	DFT calculated values					
Bond lengths / contacts [Å]							
Co1-N1	2.0108(12)	1.990					
Co1–N3	1.9990(12)	1.991					
Co1-01	1.9255(10)	1.905					
Co1-O3	1.9389(10)	1.939					
Co1N4	2.711(1)	2.791					
Bond angles [°]							
N1-Co1-N3	128.54(5)	120.95					
N1-Co1-O1	95.09(4)	96.98					
N1-Co1-O3	111.24(5)	114.35					
N3-Co1-O1	118.00(5)	118.56					
N3-Co1-O3	91.08(5)	93.11					
01–Co1–O3	113.81(5)	114.83					

Figure 3S. The overlay of the experimental (grey) and DFT calculated molecular structure of **C3**. The overlay was performed in program Mercury for Co1 and its coordination sphere, *i.e.* atoms: N1, N3, O1, O3. Experimental contact Co1---N4 indicated.

3. The plausible mechanism of the self-cyclization reaction of HL1

Scheme 1S. The alternative mechanism of cyclisation of imine **HL1** with the participation of the product of hydrolysis – o-vanillin.

Scheme 2S. The mechanism of cyclisation of imine HL1 with the participation of Co(II) ions.

4. NMR spectra of C1A and C1B and HL1-HL5

Figure 4S. ¹H NMR of C1A at room temperature in DMSO-d6

Figure 5S. ¹³C{¹H} NMR of C1A at room temperature in DMSO-d6

Figure 6S. ¹H NMR of HL1 at room temperature in DMSO-d6

Figure 8S. ¹H NMR of HL3 at room temperature in DMSO-d6

Figure 9S. ¹H NMR of HL4 at room temperature in DMSO-d6

Figure 10S. ¹H NMR of HL5 at room temperature in DMSO-d6

Figure 11S. ¹H NMR of C1B at room temperature in DMSO-d6

Figure 12S. $^{13}\text{C}\{^{1}\text{H}\}$ NMR of C1B at room temperature in DMSO-d6

5. FT-IR measurements

Figure 13S. FT-IR spectrum of C1A

Figure 15S. FT-IR spectrum of C2

Figure 17S. FT-IR spectrum of C4

0.14 0.12 0.10 0.08 0.06 0.04 0.02-

Figure 20S. FT-IR spectrum of C7

Figure 21S. FT-IR spectrum of ionic pair [Co(3AP)Cl₃]⁻[3APH]⁺)

Figure 22S. FT-IR spectra of ionic complexes: [Co(3AP)Cl₃]⁻[3APH]⁺) and C2

Figure 23S. FT-IR spectra of ionic complexes: [Co(3AP)Cl₃]⁻[3APH]⁺) and C2

Figure 24S. Fingerprint regions of FT-IR of ionic complexes: [Co(3AP)Cl₃]⁻[3APH]⁺) and C2.

6. TLC of **C5**

The stability of compound **C5** in an aqueous medium was investigated. The **C5** complex was dissolved in DMSO:water mixture 1:1. After 72 hrs, the solution was analysed by TLC chromatography.

OV: o-vanillin AP: 2-amino-5-methylpyridine HL3: ligand C5: complex R: solution of C5 in DMSO/water after 72hrs

Figure 25S. The photo of TLC plate of C5 incubated for 72 h in DMSO/water mixture