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Text 1S. Preparation of MIOSC NPs

In the first stage, 2.0 g FeCl2·4H2O and 5.2 g FeCl3·6H2O (nFe 3+ /nFe2+ = 2) were dissolved in a 

mixture of chloric acid (0.1 M) and deionized water (DI H2O, 25 mL). Meanwhile, the obtained 

solution was stirred under the N2 atmosphere at 80 ºC, and then 25 mL of NaOH (1.5 M) drop by 

drop were added to the solution. After a short while, MIO NPs appeared as dark brown sediment 

and were separated by a super magnet. The MIO NPs were washed by H2O/EtOH (1:1) three times 

and dried at 60 ºC. The modified Stöber sol-gel method was applied to prepare MIO NPs coated 

by monodispersed silica. 1.0 g of the dark brown sediment was dispersed to the mixture of 4.0 mL 

ammonia (25%), 20 mL EtOH. The mixture was sonicated in the ultrasonic for 15 min. Then, 0.6 

mL TEOS was injected into the solution.
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Text 2S. Identification and isolation of AP 

The presence of AP (acethophenone), PEA (phenyl ethyl alcohol), Bz (benzaldehyde) & BZ 

(benzoic acid) were identified by GC & GC-MS. It must be noted that di(1-phenylethyl) ether, 2,3-

diphenyl butane & over-oxidation of AP (methyl benzoate) were not detected. Additionally, the 

effect of various pivotal parameters has been assessed to determine optimal reaction conditions. 

The conversion (Х) was calculated on the basis of changes in the relative areas (%) of the EB and 

products (AP, PEA, BZ & BZ) peaks according to equation 2:

For isolation of AP, the reaction mixture was concentrated and dispersed in EtOH (20 mL). Then 

66.0 mg of Zn was dispersed in EtOH by ultrasonication and it was added drop-wise to the ethanol 

solution of the previous step, and then it was vigorously stirred at room temperature for 0.5 hr. 

Immediately after filtration, the solution was distilled at 80 °C for removing the EtOH. Next, it 

was reacted with 30 mL of the saturated solution of sodium bicarbonate (7.5 g NaHCO3 in 50 mL 

H2O) for the dissolution of BZ in the aqueous phase. After separation of the aqueous phase, the 

organic phase was washed with deionized H2O (4 ×15), subsequently extracted with EtO2. The 

organic phase is dried over anhydrous MgSO4 and the solvent was evaporated at room temperature. 

The achieved light yellow oil contains AP which was identified by FT-IR and LC-MS techniques.
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Text 3S. Apparatuses

ICP-OES (inductively coupled plasma-optical emission spectroscopy, Perkin-Elmer ICP/6500), 

AAS (atomic absorption spectroscopy, Analytik Jena-nov AA300), EDX (Energy-Dispersive X-

ray). Furthermore, the constructed polymer-coated magnetic catalysts were identified by various 

analyze (i.e. FT-IR (Fourier-Transform Infrared, Shimadzu Varian 4300Fourier Transform 

Infrared spectrometer, KBr pellets), UV–vis (Ultraviolet-visible, SHIMADZU-UV-1800, UV-

visible espectrophotometr equipped with a diffuse reflectance), TGA (Thermogravimetric 

Analysis, Perkin-Elmer TG-DTA 6300, heating rate of 15 °C/min), XRD (X-Ray Diffraction, 

Bruker D8 Advance diffractometer, CuKa radiation, 40 Kv, 20 miliamper), VSM (Vibrating-

Sample Magnetometer, BHV-55 VSM), and XPS (X-Ray Photoelectron Spectroscopy, 

PerkinElmer PHI 5000CESCA system, B.P= 9-10 Torr). The DLS (Dynamic Light Scattering, 

(DLS, Zetasizer Nano-ZS-90 (ZEN 3600,Malvern Instrument));   SEM (Transmission Electron 

Microscopy, Tecnai F30TEM operating at 300 Kv), TEM (Transmission Electron Microscopy, 

Philips 501 microscope ,80 kV voltage) provided direct visualization of the morphology and size 

of the MIOSC-N-et-NH2@CS-Mn(II).
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Text 4S. Leaching and heterogeneity test 

A Sheldon test was applied to assess the heterogeneity and/or Leaching test of the MIOSC-N-et-

NH2@CS-Mn. The reactions of discoloration of methyl orange and aerobic oxidation of 

ethylbenzene were divided into two-halves after 3.0 min and 2.0 h from the beginning of the 

catalytic process, respectively. In one-half, the MIOSC-N-et-NH2@CS-Mn was separated by bare 

magnet from the reaction medium and the reaction was proceeded (5.0 min for degradation process 

& 1.0 h for aerobic oxidation of ethylbenzene), which results confirmed that no progress has been 

done in catalyst-free condition. These data shown that no leaching of Mn carried out into the filtrate 

solution, thus, these observations justified the true-heterogeneity of MIOSC-N-et-NH2@CS-Mn. 

Additionally, to study of reusability of MIOSC-N-et-NH2@CS-Mn, the bio-composite was 

separated magnetically, washed thoroughly, dried and reused in consecutive runs. 
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Text 5S. Response surface method (RSM) 

The second-order RE (%) to predict the catalytic decolorization of MO in terms of coded and 

actual factors are as below:

Removal efficiency (%) = +100.00 +22.85 A +27.09 B +7.98 C +34.26 F +9.13AB +14.38 AF 
+20.25 BF-20.34 A2   -29.01 B2 -10.14 C2 -9.77 D2 -38.29 F2

where RE (%) is the response factor in peak area and A, B, C, D, E and F are the independent 

factors of PMS dosage, MIOSC-N-et-NH2@CS-Mn loading, time, temprature, pH, and MO 

dosage. Base of analysis of variance (ANOVA) for response surface quadratic model. The R2 

(coefficient of determination) and Adjusted-R2 was 0.9641 confirming the model were suitable to 

represent the factors for MIOSC-N-et-NH2@CS-Mn.
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T
Table 1S. Chemical structures and capabilities of the selected pollutants.

Sample λmax

(nm)
Mw 

(g/mol)
Name (IUPAC) Molecular structure

Methylene 
orange
(MO)

466 327.33 Sodium 4-{[4-
(dimethylamino)phenyl]diazenyl}benzene-

1-sulfonate

N

N
N

S
O

O
O-

Methyl 
violet
(MV)

585 357.5 4-[[4-(dimethylamino)phenyl]-(4-
methyliminocyclohexa-2,5-dien-1-

ylidene)methyl]-N,N-dimethylaniline

N N

N

Methylene 
blue

(MB)

664 319.85 [7-(Dimethyl- amino)phenothiazin-3-
ylidene]-dimethyla- zanium chloride

N

S NN

Bisphenol A
(BPA)

265 228.29 4-[2-(4-hydroxyphenyl)propan-2-
yl]phenol

OHHO
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Table .2S. Comparison of energy activation and thermodynamic prpperties of MIOSC-N-et-
NH2@CS-Mn in MO degradation with other heterogeneous system.

Entry Catalytic System Ea (kJ/mol) ΔH (kJ/mol) ΔS (kJ/mol K) [Ref]
1 S-1 CuO/H2O2 59.84 57.20 -0.0962 [1]
2 CuNPs/PMS 13.19 11.39 -0.25848 [2]
3 CuNPs/PDS 21.64 19.12 -0.24268 [2]
4 HCF(III)a 79.09 76.41 -0.00498 [3]
5 MIL-10-DCD-1000/PMSb 18.70 NRc NR [4]
6 FeCo-MCM-41/PMS 17.20 NR NR [5]
7 MIOSC-N-et-NH2@CS-Mn/PMS 35.62 38.61 −0.12171 This work

aHexacyanoferrate (III).
bDicyandiamide immobilized on the surface of carbon cloth.
cNot reported.
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Table 3S. Comparison of energy activation of MIOSC-N-et-NH2@CS-Mn in aerobic oxidation of 
EB with other heterogeneous system.

Entry Catalytic System Ea (kJ/mol)a [Ref]

1 3/3-IRA-900/TBHP 33.6 ± 7.5 [6]
2 CuMgAl-LDH/NHPI 35.2 [7]
3 Co-Cu/SAPS-15/TBHP 37.098 [8]
4 Co-N/C-700/TBHP 22.2 ± 2.1 [9]
5 MIOSC-N-et-NH2@CS-Mn/NDHPI 22.59 This study

aEnergy activation
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Table. 4S. The aerobic oxidation of EB Catalyzed by MIOSC-N-et-NH2@CS-Mn nanocomposite. 

No. Solventa Х
[%]

SAP  

 [%]

1 MeOH 21.3 32.9
2 EtOH 16.0 26.8
3 HAc 90.3 93.8
4 BZ 21.4 31.4
5 DCM 41.3 36.0
6 TCM 47.2 45.7
7 1,2-DCM 29.6 39.1
8 CY 54.4 36.8
9 ACN 63.4 48.2
10 TOL 44.7 12.0
11 Bz 36.6 53.9
12 HAc-H2O (1:2) 32.9 34.2
13 HAc-H2O (1:1) 47.2 37.9
14 HAc-H2O (2:1) 94.0 95.0
15 HAc-H2O (1.5:1) 93.7 95.1

                 a Reaction conditions: [EB]= 2 mmol; [MIOSC-N-et-NH2@CS-Mn] = 60 mg, Vsolvent = 5.0 mL, 
[NDHPI]=400 mg; t=5 h, T = 80 oC; under O2 bubbling. 
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Table 5S. Comparison of catalytic activity of MIOSC-N-et-NH2@CS-Mn whit various catalytic 
systems in degradation of pollutants reported in literature.

S. Catalytic System t
(min)

Oxidant
[c]

Efficiency
(%)

pH Ref

MB 5% Mn@Carbon Composite [0.5g/L] 120 PMS [1.0 g/L] 88.16 NR [10]
Cu@Co-MOFs-3[0.2 g/L] 1 30 PMS [2.0 mM] 100 11.0 [11]
Mn3O4[0.12 g/L] 60 PMS [0.94 g/L] 88.64 4.00 [12]
elbaite[1g/L] 15 PMS [0.5 g/L] 100 2.90 [13]
5% MnO2@SBC[0.3g/L] 2 180 PMS [0.5 mM] 100 7.50 [14]
CuFe2O4@GO[0.2 g/L] 3 30 PMS [0.8 mM] 93.3 7.00 [15]
CNTs-CoFe2O4@PPy[1.0g/L ] 4 30 PMS [4.0 mM] 100 7.00 [16]
MnCo2O4.5[20mg/L] 25 PMS [0.5g/L] 100 NR [17]
FeMnO3[0.2g/L] 60 PMS [2.0 g/L] 98 6.70 [18]
Fe3O4@MnO2[300mg/L] 30 PMS [20 mM] 100 7.94 [19]
This work 14 PMS[2.0 mM] 97.6 7.00 -

MO MnCo2O4.5[20mg/L] 6 PMS [0.5 g/L] 96.3 NR [17]
OMS-2/CNFs[0.2g/L] 5 30 PMS [0.2 g/L] ~ 90 7.00 [20]
Co-Mn LDH[0.025 g/L] 6 4 PMS [0.1 g/L] 100 6.87 [21]
CC-MIL-10-DCD-1000[ 0.1 g/L] 7 30 PMS [0.3 mM] <95 7.00 [13]
ACP-800 [0.5 g/L] 8 80 PMS [3.0 mM] 100 3.5 [22]
CuAl–LDH[20mg] 10 H2O2 [0.5mL] 99.10 ~7.0 [23]
FeCo-MCM-41 [0.2g/L] 9 60 PMS [0.075 mM] <90 5.60 [14]
Fe2MnO4/AC-H[2.5g/L] 10 60 H2O2 [1.8×10−2 mol/L] 100 3.00 [24]
This work 8 PMS[2.0 mM] 98.8 7.00 -

BPA Mn0.8Fe2.2O4 MNCs[0.5 g/L] 11 20 PMS [0.4 mM] 100 10.2 [25]
p-Mn/Fe3O4[0.2 g/L] 30 PMS [2.0 mmol/L] 100 11.0 [26]
Mn-Fe LDO[0.4 g/L] 12 50 PMS [1.5 mM] 100 7.00 [27]
Fe/Mn@NBC800[0.2g/L] 13 20 PMS [3.0 mM] 100 6.85 [28]
p-Mn1Fe1 NCs[0.3g/L] 14 30 PMS [2.0 mM] 100 7.00 [29]
MnFe2O4@BC[0.2g/L] 30 PMS [0.2 g/L] 100 7.00 [30]
Mn-Fe2O3[0.5g/L] 30 PMS [0.1 g/L] 99.0 8.00 [31]

13%-Mn-FeBC[0.5 g/L] 15 120 PMS [4.0 mM] 100 12.0 [32]
FeMn@CN-800[50mg/L] 16 60 PMS [0.20g/L] 95.4 5.60 [33]
This work 10 PMS[2.0 mM] 98.4 7.00 -

MV Fe3O4@MnO2[300mg/L] 30 PMS [20.0 mM] 100 7.94 [19]
MnFe2O4-rGO [0.05 g/L] 30 PMS [0.5 mg/L] - 97.0 [34]

mailto:Fe3O4@MnO2(300mg/L)
mailto:Fe3O4@MnO2(300mg/L)
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1 Cu particle-doped cobalt-based metal–organic framework (Cu@Co-MOF).
2 Sludge biochar by MnO2.
3 Copper ferrite-graphite oxide hybrid.
4 Polypyrrole/CNTs-CoFe2O4 magnetic nanohybrid.
5 Manganese (III) species in manganese oxide octahedral molecular sieve by interaction with carbon nanofibers.
6 Co-Mn layered double hydroxide.
7 Fe/N-codoped carbocatalysts loaded on carbon cloth.
8 Activated carbon using pistachio (ACP).
9 Fe-Co bimetal-doped MCM-41.
10 Magnetic Fe2MO4 (M: Fe, Mn) activated carbons.
11 Mn/Fe MOF-templated.
12 Mn–Fe layered double oxides.
13 Nitrogen-doped biochar encapsulated Fe/Mn nanoparticles.
14 Porous Mn-Fe nanocubes.
15 Coupling of KMnO4-assisted sludge dewatering and pyrolysis to prepare Mn, Fe-codoped biochar.
16 Fe/Mn-loaded nitrogen-doped porous carbonaceous materials.
17 Zero valent iron@ guar gum crosslinked soya lecithin nanocomposite hydrogel.
18 Nickel Phosphide with Dual Active Sites

         

Fe0@GG-cl-SY NCH [30 mg] 17 120 H2O2 [5.0 mL/L] Natural 81.0 [35]
CeVO4[1.0 g/L] 40 PMS [2.0 g/L] - 100 [36]
Ni2P[150 mg/L]18 12 PMS [150 mg/L] 35.67 [37]
UCN@COF[0.10 g/L] 19 90 PMS[0.65 mM] 5.88 96.2 [38]
This work 14 PMS[2.0 mM] 95.7 7.00 -
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Table 6S. Comparison of catalytic activity of MIOSC-N-et-NH2@CS-Mn whit various catalytic 
systems in EB oxidataion reported in literature.

1 BTC:1,3,5-benzenetri carboxylic acid
2 LDH-hosted Co(II) Schiff base of 2-hydroxy-1- naphthaldehyde and 4-amino benzoic acid
3 Co-N-C immobilized carbon nanotubes (CNTs)
4 Metallophthalocyanine Intercalated Layered Double Hydroxide

No Catalytic system X 
[%]

S
[%]

[Ref]

1 Ce-BTC1 [0.07 mg],160 ºC, 20h, solvent-free, O2 84.99 95.63 [39]
2 3/3-IRA-900[0.1 g],100 ºC,12h,solvent-free,TBHP 83.5 93.3 [6]

3 LDH-[NAPABA-Co[II]]2 [100 mg],120 ºC,7h,solvent-free,TBHP 67.4 99.57 [40]
4 Ti–Zr–Co [20 mg],170,4.5h,CH3CN,O2 61.9 69.2 [41]
5 Al2O3@CoCuAl-MMO6 [0.1g],120 ºC,12h,solvent-free,TBHP 92.8 89.4 [42]
6 Co-N-C0.15 /CNTs3 [30 mg],120 ºC,5h,solvent-free,O2 19.9 72.9 [43]
7 Co[II]0.1mol%/NHPI [1.0 mol%],80 ºC,6h, solvent free,O2 35.0 83.0 [44]
8 CoPcTs-Zn2Al-LDH4[30 mg]/NHPI 0.4mmol,120 ºC,12h,Benzonitrile,O2 90.0 99.0 [45]
9 Mn TCPP/pd-CTS5,155 ºC,2.5h,solvent-free,O2[0.8 MPa] 20.74 53.91 [46]
10 CoSACs6 [2.0 mg],120 ºC,24h,solvent-free,air atmosphere 46.0 97.0 [47]
11 Mg2Fe-LDH [0.1 g]/NHPI [0.1 mol],80 ºC,10h,Trifluorotoluene,O2 7.40 86.2 [48]
12 Co2Al-LDH [0.1 g]/NHPI [0.1 mol],80 ºC,10h,Trifluorotoluene,O2 34.6 85.2 [49]

13 CoTPPs/Mesp-CTS7 [0.72×10-6 mol],140 ºC,4h,solvent free,O2 42.8 65.4 [50]
14 FeTCPP/Mesp-CTS8,145 ºC,4h,solvent free,O2 24.4 74.3 [50]
15 SiO2/Al2O3-APTMS_BPK-Mn[II]9/NHPI[15%],100,8h,acetic acid,O2 53.0 74.0 [51]
16 Mn[Ac]2.4H2O [0.2 g],130 ºC,8h,solvent free,O2 [1.0] Mpa 45.5 78.8 [52]
17 Mn-ZSM-5-50 10 [100 mg],80 ºC,6h,CH3CN,TBHP 43.6 68.8 [53]
18 NS-CSs 11[0.01g],80 ºC,10h,H2O,TBHP 93.9 94.2 [54]
19 LDH-Si[ph]-Mn-3[6]12 [0.2] g/TBHP 30 mg,130 ºC,5h,solvent-free,O2 18.0 95.8 [55]
20 Mn[II]-Met@MMNPs13 [100 mg]/NHPI15%,100 ºC,8h,HOAc,O2 85.0 98.0 [56]
21 PdPc@CA14 [0.036 mmol],reflux,24,solvent-free,O2 73.0 100 [57]
22 Mn/N-C/Al2O3 [50 mg],120 ºC,6h,solvent-free,O2 27.8 >99 [58]
23 MIOSC-N-et-NH2@CS-Mn [40 mg],80 ºC,5.0 h, acetic acid/water,O2 93.7 95.1 This work

mailto:Al2O3@CoCuAl-MMO(0.1gr),120,12h,solvent-free,TBHP%2030%20mmol
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5 manganese porphyrin is promoted by the axial nitrogen coordination in powdered chitosan
6 cobalt single atom site
7 Mesoporous Chitosan-Grafted Cobalt Tetrakis(p-Sulfophenyl) Porphyrin
8 Mesoporous chitosan‐immobilized iron tetrakis(4‐ carboxyphenyl)porphyrin
9 Mn supported on SiO2-Al2O3
10 tetrahedral coordination manganese-incorporated ZSM-5 zeolite (Mn-ZSM-5).
11 Nitrogen and Sulfur Co-Doped Carbon Nanospheres.
12 Mn-containing silylated MgAl layered double hydroxides.
13 Organosuperbase dendron manganese complex grafted on magnetic nanoparticles.
14 cross-linked chitosan aerogel modified with Pd(II)/phthalocyanine.     
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Table 7S. Commercial price and amount of chemical reagents used.
Material CAS. Number        Volume/Weight     Price ($/g)
FeCl2·4H2O 13478-10-9             0.3 g 0.030
FeCl3·6H2O 10025-77-1             0.7 g 0.110
HCl Dr Mojallali,Co.  3.0 mL 0.003
NaOH Arvandparak, Co.             6.0 g 0.053
NH4 OH Dr Mojallali,Co.  4.0 mL 0.013
EtOH Simin Tak, Co.             80 mL 0.260
TEOS 78-10-4  0.6 mL 0.050
APTS 13822-56-5  0.1 mL 0.050
Chitosan 9012-76-4             0.10 g 0.017
AcOH 64-19-7  0.4 mL 0.030
Glutaraldehyde (50 %) 111-30-8 2.0 mL 0.160
Mn(OAc)2 6156-78-1 0.50 g 0.020

Total price ($) 0.794
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Table.8S. Screening data for the cost of the various systems for degradation of 1m3 wastewater.

No. Pollutant/m3 Catalytic system    Cost ($ /m3) [Ref]
1 Tetracycline PS+γ-Fe2O3-CeO2     0.106 [59]
2 Ketoprofen PS+Fe2+                                                                 0.517 [60]
3 Ketoprofen PS+Thermal                                                       44.41 [60]
4 Ketoprofen PS+UV                                                          0.176 [60]
5 Methyl orange PMS+MIOSC-N-et-NH2@CS-Mn            26.46   This work
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Fig 1S. Magnetic properties of MIONPs, MIOSC-N-et-NH2, MIOSC-N-et-NH2@CS and MIOSC-
N-et-NH2@CS-Mn.
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moval efficiency of degradation of MO by MIOSC-N-et-NH2@CS-Mn in H2O and D2O.
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Fig. 3S. Efficiency of MIOSC-N-et-NH2@CS-Mn in MO degradation, EB oxidation and TOC 
removal.
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Fig 4S. TEM image and DLS analysis of MIOSC-N-et-NH2@CS-Mn after (A) 6 run, and (B) 8 
run.
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