Synthesis, Spectroscopic, SC-XRD/DFT and Non-Linear Optical (NLO) Properties of Chromene Derivatives

Nadia Arif ¹, Zahid Shafiq^{1*}, Sajida Noureen², Muhammad Khalid^{3,4*}, Abida Ashraf¹, Muhammad Yaqub¹, Shabana Irshad^{3,4}, Muhammad Usman Khan⁵, Muhammad Nadeem Arshad, ⁶ Ataualpa Albert Carmo Braga⁷, Ahmed H. Ragab⁸ and Saedah R. Al-Mhyawi⁹

¹Institute of Chemical Sciences, Organic Chemistry Division, Bahauddin Zakariya University, Multan-60800, Pakistan

²Materials Chemistry Laboratory, Institute of Chemistry, The Islamia University of Bahawalpur,

63100, Pakistan

³Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

⁴Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan

⁵Department of Chemistry, University of Okara, Okara-56300, Pakistan

⁶Center of Excellence for Advanced Materials Research (CEAMR) Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

⁷Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. LineuPrestes 748, São Paulo, 05508-000, Brazil

⁸Department of Chemistry, Faculty of Science, King Khalid University, Abha 62224, Saudi Arabia

⁹Department of Chemistry, College of Science, University of Jeddah, Jeddah 21419, Saudi Arabia

Dr. Zahid Shafiq: zahidshafiq25@hotmail.com

Dr. Muhammad Khalid: <u>khalid@iq.usp.br; muhammad.khalid@kfueit.edu.pk</u>

Figure S1: ¹H NMR spectrum of compound 4a

Figure S2: ¹³C NMR spectrum of compound 4a

Figure S3: ¹H NMR spectrum of compound 4b

Figure S4: ¹³C NMR spectrum of compound 4b

Figure S5: IR spectrum of 4a compound

Figure S6: IR spectrum of 4b compound

Bond Lengths			Bond Angles				
	DFT	XRD		DFT	XRD		
O1-C10	1.355	1.366(3)	C10-O1-C15	118.3	118.5		
O1-C15	1.366	1.368(3)	O1-C10-C11	123.7	123.2		
N2-C15	1.342	1.344(3)	O1-C10-C12	114.1	113.4		
O3-C20	1.368	1.373(3)	O1-C15-N2	110.4	109.8		
O3-C22	1.364	1.375(3)	O1-C15-C14	121.9	122.1		
O4-C9	1.369	1.372(3)	N2-C15-C14	127.6	128		
O4-C31	1.415	1.431(3)	C20-O3-C22	122.8	122.6		
O5-C17	1.36	1.381(3)	O3-C20-O7	117.6	116.4		
O5-C18	1.385	1.387(3)	O3-C20-C26	117.6	117.8		
O6-C18	1.202	1.202(3)	O3-C22-C29	120.9	120.1		
O7-C20	1.211	1.204(3)	O3-C22-C35	117.3	117.5		
C8-C9	1.403	1.395(3)	C9-O4-C31	117.2	118.3		
C8-C16	1.521	1.527(3)	O4-C9-C8	116	115		
C8-C24	1.389	1.385(3)	O4-C9-C21	123.2	124		
C9-C21	1.393	1.387(3)	O4-C31-C26	108.8	106.2		
C10-C11	1.347	1.34(3)	C17-O5-C18	122.6	121.9		
C10-C12	1.444	1.436(3)	O5-C17-C12	121.7	120.9		
C11-C16	1.507	1.5(3)	O5-C17-C27	117.6	117.7		
C11-C18	1.459	1.45(3)	O5-C18-O6	117.9	116.6		
C12-C13	1.4	1.392(3)	O5-C18-C11	117.2	118.1		
C12-C17	1.398	1.39(3)	O6-C18-C11	124.9	125.3		
C13-C28	1.386	1.375(3)	O7-C20-C26	124.8	125.9		
C14-C15	1.361	1.347(3)	C9-C8-C16	121	121.8		
C14-C16	1.516	1.523(3)	C9-C8-C24	118.4	117.7		
C14-C25	1.418	1.41(3)	C8-C9-C21	120.7	120.9		
C17-C27	1.392	1.376(3)	C16-C8-C24	120.5	120.4		
C19-C25	1.162	1.149(3)	C8-C16-C11	113.6	114		
C20-C26	1.464	1.444(3)	C8-C16-C14	111.8	111.7		
C21-C23	1.394	1.375(3)	C8-C24-C32	121.5	121.6		
C22-C29	1.399	1.395(3)	C9-C21-C23	119.6	119.2		
C22-C35	1.391	1.371(3)	C11-C10-C12	122.3	123.4		
C23-C32	1.388	1.36(3)	C10-C11-C16	122.4	123.2		
C24-C32	1.394	1.391(3)	C10-C11-C18	119.6	118.6		
C26-C30	1.349	1.338(3)	C10-C12-C13	124	125.1		
C26-C31	1.501	1.496(3)	C10-C12-C17	116.5	116.8		
C27-C33	1.392	1.379(3)	C16-C11-C18	118	118.2		
C28-C33	1.403	1.396(3)	C11-C16-C14	108.2	108.2		
C29-C30	1.442	1.43(3)	C13-C12-C17	119.5	118.1		
C29-C34	1.402	1.398(3)	C12-C13-C28	119.5	120.3		
C33-C36	1.506	1.505(3)	C12-C17-C27	120.8	121.5		

Table S1: Comparison of selected bond lengths (Å) and angles (°) of 4a

	C34-C38	1.384	1.374(3)	C13-C28-C33	121.1	121.1
	C35-C37	1.387	1.359(3)	C15-C14-C16)	122.6	123.2
	C37-C38	1.401	1.378(3)	C15-C14-C25	117.2	117.9
	O39-C40	1.412	1.328(3)	C16-C14-C25	120	118.9
~ ~ ~ .	~ .	0 1			4 (0)	0.4

 Table S1 Continue: Comparison of selected bond lengths (Å) and angles (°) of 4a

Bond Angles							
	DFT	XRD					
C14-C25-N19	177.9	178.7					
C17-C27-C33	119.9	120.4					
C20-C26-C30	119.6	119.9					
C20-C26-C31	116.9	115.9					
C21-C23-C32	120.4	121.5					
C29-C22-C35	121.8	122.4					
C22-C29-C30	117.5	117.7					
C22-C29-C34	118.5	117.5					
C22-C35-C37	118.6	118.9					
C23-C32-C24	119.4	118.9					
C30-C26-C31	123.5	124.2					
C26-C30-C29	121.3	121.9					
C27-C33-C28	119.2	118.5					
C27-C33-C36	120.3	121.2					
C28-C33-C36	120.5	120.3					
C30-C29-C34	124	124.8					
C29-C34-C38	120.4	119.7					
C34-C38-C37	119.9	120.9					
C35-C37-C38	120.8	120.6					

Table S2: Comparison of selected bond lengths (Å) and angles (°) of 4b

Bo	nd Leng	ths	Bond Angles			
	DFT	XRD		DFT	XRD	
O1-C10	1.381	1.381(3)	C10-O1-C32	114.7	118.6(2)	
O1-C32	1.418	1.421(3)	O1-C10-C30	120	123.3(2)	
O2-C15	1.361	1.364(3)	O1-C10-C35	118.9	115.6(2)	
O2-C16	1.364	1.377(3)	O1-C32-C18	107.9	107.1(2)	
O3-C19	1.374	1.376(3)	C15-O2-C16	118.8	118.7(2)	
O3-C27	1.362	1.378(3)	O2-C15-C11	123.2	123.6(2)	
O4-C22	1.361	1.376(3)	O2-C15-C14	114.5	113.5(2)	
O4-C24	1.38	1.387(3)	O2-C16-N9	109.6	109.4(2)	
O5-C26	1.345	1.338(3)	O2-C16-C13	123	122.1(2)	
O5-C40	1.425	1.436(3)	C19-O3-C27	122.3	122.1(2)	
O6-C24	1.202	1.215(3)	O3-C19-O7	118.4	116.5(2)	
O7-C19	1.205	1.202(3)	O3-C19-C18	117	117.7(2)	

08-C26 1.224 1.222(3) 03-C27-C21 121.3 120.6(2) N9-C16 1.355 1.336(3) 03-C27-C37 117.3 116.8(2) C10-C30 1.393 1.385(3) C22-O4-C24 122.6 121.3(2) C10-C35 1.399 1.393(3) O4-C22-C14 121.6 121.2(2) C11-C12 1.505 1.512(3) O4-C22-C25 117.4 117.4(2) C11-C14 1.462 1.439(3) O4-C24-C6 118.3 115.8(2) C12-C13 1.515 1.513(3) C26-O5-C40 115.1 117.6(2) C12-C35 1.526 1.534(3) O5-C26-C13 111.9 112.1(2) C13-C16 1.361 1.356(3) O5-C26-C13 111.9 112.1(2) C14-C15 1.443 1.436(3) O7-C19-C18 124.6 125.8(2) C14-C20 1.402 1.391(3) O8-C26-C13 126.5 126.2(2) C14-C22 1.398 1.38(3) N9-C16-C13 127.5 128.5(2)				I		
N9-C161.3551.336(3)O3-C27-C37117.3116.8(2)C10-C301.3931.385(3)C22-O4-C24122.6121.3(2)C10-C351.3991.393(3)O4-C22-C14121.6121.2(2)C11-C121.5051.512(3)O4-C22-C25117.4117.4(2)C11-C151.3461.339(3)O4-C24-C6118.3115.8(2)C11-C241.4621.439(3)O4-C24-C11117.1118.5(2)C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-C13111.9112.1(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C18-C321.3951.387(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C271.41.383(3)C12-C11-C14122.2122.9(2)C21-C271.41.383(3)C12-C13-C16121.8122.3(2)C22-C251.392 <td>O8-C26</td> <td>1.224</td> <td>1.222(3)</td> <td>O3-C27-C21</td> <td>121.3</td> <td>120.6(2)</td>	O8-C26	1.224	1.222(3)	O3-C27-C21	121.3	120.6(2)
C10-C30 1.393 1.385(3) C22-O4-C24 122.6 121.3(2) C10-C35 1.399 1.393(3) O4-C22-C14 121.6 121.2(2) C11-C12 1.505 1.512(3) O4-C22-C25 117.4 117.4(2) C11-C15 1.346 1.339(3) O4-C24-C6 118.3 115.8(2) C11-C24 1.462 1.439(3) O4-C24-C11 117.1 118.5(2) C12-C13 1.515 1.513(3) C26-O5-C40 115.1 117.6(2) C13-C16 1.361 1.356(3) O5-C26-C13 111.9 112.1(2) C13-C26 1.455 1.449(3) O6-C24-C11 124.6 125.7(2) C14-C20 1.402 1.391(3) O8-C26-C13 126.5 126.2(2) C14-C22 1.398 1.38(3) N9-C16-C13 127.5 128.5(2) C17-C28 1.39 1.38(3) C10-C30-C33 119.8 19.5(2) C18-C19 1.47 1.452(3) C10-C35-C17 118 117.7(2)	N9-C16	1.355	1.336(3)	O3-C27-C37	117.3	116.8(2)
C10-C351.3991.393(3)O4-C22-C14121.6121.2(2)C11-C121.5051.512(3)O4-C22-C25117.4117.4(2)C11-C151.3461.339(3)O4-C24-O6118.3115.8(2)C11-C241.4621.439(3)O4-C24-C11117.1118.5(2)C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4451.449(3)O6-C24-C11124.6125.8(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C211.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C13-C12-C35110.7111.9(2)C21-C271.41.383(3)C13-C12-C35112.5112.9(2)C22-C251.3921.391(3)C13-C12-C14122.2122.9(2)C25-C291.38	C10-C30	1.393	1.385(3)	C22-O4-C24	122.6	121.3(2)
C11-C121.5051.512(3)O4-C22-C25117.4117.4(2)C11-C151.3461.339(3)O4-C24-O6118.3115.8(2)C11-C241.4621.439(3)O4-C24-C11117.1118.5(2)C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4451.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C17118117.7(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C271.41.383(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C22-C251.3921.391(3)C11-C12-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C25110.7111.9(2)C22-C251.3	C10-C35	1.399	1.393(3)	O4-C22-C14	121.6	121.2(2)
C11-C151.3461.339(3)O4-C24-O6118.3115.8(2)C11-C241.4621.439(3)O4-C24-C11117.1118.5(2)C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C35-C12121.6122.8(2)C18-C191.471.452(3)C10-C35-C17118117.7(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C271.41.383(3)C13-C12-C35110.7111.9(2)C21-C231.3941.381(3)C13-C12-C35112.5112.9(2)C22-C251.3921.391(3)C13-C12-C35112.5112.9(2)C22-C251.3931.372(3)C12-C13-C16121.8122.3(2)C22-C251.3931.372(3)C12-C13-C26120.1120.2(2)C22-C31	C11-C12	1.505	1.512(3)	O4-C22-C25	117.4	117.4(2)
C11-C241.4621.439(3)O4-C24-C11117.1118.5(2)C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C17118117.7(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391381(3)C12-C13-C16121.8122.3(2)C22-C251.3931.383(3)C12-C13-C16121.8122.9(2)C22-C251.3931.383(3)C12-C13-C26118.1117.5(2)C29-C311.4061.393(3)C12-C13-C26118.1117.5(2)C2	C11-C15	1.346	1.339(3)	O4-C24-O6	118.3	115.8(2)
C12-C131.5151.513(3)C26-O5-C40115.1117.6(2)C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C35-C12121.6122.8(2)C18-C191.471.452(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C34-C38 <t< td=""><td>C11-C24</td><td>1.462</td><td>1.439(3)</td><td>O4-C24-C11</td><td>117.1</td><td>118.5(2)</td></t<>	C11-C24	1.462	1.439(3)	O4-C24-C11	117.1	118.5(2)
C12-C351.5261.534(3)O5-C26-O8121.6121.7(2)C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C17118117.7(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C15122.8121.9(2)C21-C271.441.43(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C13-C12-C35110.7111.9(2)C21-C371.3931.383(3)C12-C13-C16121.8122.3(2)C22-C251.3921.381(3)C12-C13-C16121.8122.3(2)C22-C251.3931.372(3)C12-C13-C26118.1117.5(2)C23-C331.391.372(3)C12-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C38 <t< td=""><td>C12-C13</td><td>1.515</td><td>1.513(3)</td><td>C26-O5-C40</td><td>115.1</td><td>117.6(2)</td></t<>	C12-C13	1.515	1.513(3)	C26-O5-C40	115.1	117.6(2)
C13-C161.3611.356(3)O5-C26-C13111.9112.1(2)C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C29-C311.4061.393(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C34-C38 <td>C12-C35</td> <td>1.526</td> <td>1.534(3)</td> <td>O5-C26-O8</td> <td>121.6</td> <td>121.7(2)</td>	C12-C35	1.526	1.534(3)	O5-C26-O8	121.6	121.7(2)
C13-C261.4551.449(3)O6-C24-C11124.6125.7(2)C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C241.4021.398(3)C15-C11-C24117.7111.9(2)C21-C251.3921.391(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C29-C311.4061.393(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C22116.4116.9(2)C34-C381.3851.363(3)C15-C14-C22119118.7(2)C34-C38 </td <td>C13-C16</td> <td>1.361</td> <td>1.356(3)</td> <td>O5-C26-C13</td> <td>111.9</td> <td>112.1(2)</td>	C13-C16	1.361	1.356(3)	O5-C26-C13	111.9	112.1(2)
C14-C151.4431.436(3)O7-C19-C18124.6125.8(2)C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.388(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C27-C371.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C13-C26	1.455	1.449(3)	O6-C24-C11	124.6	125.7(2)
C14-C201.4021.391(3)O8-C26-C13126.5126.2(2)C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C35110.7111.9(2)C21-C271.41.383(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C29-C311.4061.393(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C14-C15	1.443	1.436(3)	O7-C19-C18	124.6	125.8(2)
C14-C221.3981.38(3)N9-C16-C13127.5128.5(2)C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C29-C311.4061.393(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C14-C20	1.402	1.391(3)	O8-C26-C13	126.5	126.2(2)
C17-C281.391.38(3)C30-C10-C35121.1121.1(2)C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C14-C22	1.398	1.38(3)	N9-C16-C13	127.5	128.5(2)
C17-C351.3951.387(3)C10-C30-C33119.8119.5(2)C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C241.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C27-C371.3931.383(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.3851.363(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C17-C28	1.39	1.38(3)	C30-C10-C35	121.1	121.1(2)
C18-C191.471.452(3)C10-C35-C12121.6122.8(2)C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C27-C371.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C17-C35	1.395	1.387(3)	C10-C30-C33	119.8	119.5(2)
C18-C231.3451.336(3)C10-C35-C17118117.7(2)C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C12-C13-C16121.8122.3(2)C27-C371.3931.383(3)C12-C13-C16121.8122.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C18-C19	1.47	1.452(3)	C10-C35-C12	121.6	122.8(2)
C18-C321.4991.493(3)C12-C11-C15122.8121.9(2)C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C28-C331.3931.372(3)C12-C13-C16121.8122.3(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C18-C23	1.345	1.336(3)	C10-C35-C17	118	117.7(2)
C20-C311.3811.374(3)C12-C11-C24117.6119.2(2)C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C35-C17120.4119.5(2)C29-C311.4061.393(3)C15-C14-C20124.4124.3(2)C30-C331.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C18-C32	1.499	1.493(3)	C12-C11-C15	122.8	121.9(2)
C21-C231.4441.43(3)C11-C12-C13109.3109.5(2)C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C20-C31	1.381	1.374(3)	C12-C11-C24	117.6	119.2(2)
C21-C271.41.383(3)C11-C12-C35110.7111.9(2)C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C21-C23	1.444	1.43(3)	C11-C12-C13	109.3	109.5(2)
C21-C341.4021.398(3)C15-C11-C24119.5118.7(2)C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C21-C27	1.4	1.383(3)	C11-C12-C35	110.7	111.9(2)
C22-C251.3921.391(3)C11-C15-C14122.2122.9(2)C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C21-C34	1.402	1.398(3)	C15-C11-C24	119.5	118.7(2)
C25-C291.3891.381(3)C13-C12-C35112.5112.9(2)C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C22-C25	1.392	1.391(3)	C11-C15-C14	122.2	122.9(2)
C27-C371.3931.383(3)C12-C13-C16121.8122.3(2)C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C25-C29	1.389	1.381(3)	C13-C12-C35	112.5	112.9(2)
C28-C331.3931.372(3)C12-C13-C26120.1120.2(2)C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C27-C37	1.393	1.383(3)	C12-C13-C16	121.8	122.3(2)
C29-C311.4061.393(3)C12-C35-C17120.4119.5(2)C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C28-C33	1.393	1.372(3)	C12-C13-C26	120.1	120.2(2)
C29-C361.5041.501(3)C16-C13-C26118.1117.5(2)C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C29-C31	1.406	1.393(3)	C12-C35-C17	120.4	119.5(2)
C30-C331.391.383(3)C15-C14-C20124.4124.3(2)C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C29-C36	1.504	1.501(3)	C16-C13-C26	118.1	117.5(2)
C34-C381.3851.363(3)C15-C14-C22116.4116.9(2)C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C30-C33	1.39	1.383(3)	C15-C14-C20	124.4	124.3(2)
C37-C391.3871.374(3)C20-C14-C22119118.7(2)C38-C391.41.377(3)C14-C20-C31119.9120.3(2)	C34-C38	1.385	1.363(3)	C15-C14-C22	116.4	116.9(2)
C38-C39 1.4 1.377(3) C14-C20-C31 119.9 120.3(2)	C37-C39	1.387	1.374(3)	C20-C14-C22	119	118.7(2)
	C38-C39	1.4	1.377(3)	C14-C20-C31	119.9	120.3(2)

 Table S2 Continue:
 Comparison of selected bond lengths (Å) and angles (°) of 4b

Bond Angles							
	DFT	XRD					
C28-C17-C35	121.4	121.7(2)					
C17-C28-C33	119.8	119.4(3)					
C19-C18-C23	120.8	119.5(3)					
C19-C18-C32	115.4	117.9(3)					
C23-C18-C32	123.7	122.5(3)					
C18-C23-C21	120.3	122.3(3)					

C20-C31-C29	120.9	120.8(3)
C23-C21-C27	117.9	117.6(3)
C23-C21-C34	123.5	124.4(3)
C27-C21-C34	118.6	118(3)
C21-C27-C37	121.4	122.6(3)
C21-C34-C38	120.5	120.4(3)
C22-C25-C29	119.9	119.4(3)
C25-C29-C31	119.2	119.3(3)
C25-C29-C36	120.5	120.8(3)
C27-C37-C39	118.9	117.2(3)
C28-C33-C30	119.8	120.5(3)
C31-C29-C36	120.2	119.9(3)
C34-C38-C39	119.8	119.8(3)
C37-C39-C38	120.7	122(3)

Table S3: Selected Torsion angles (°) of entitled compounds

4a	EXP	4b	EXP
O6-C19-C18-C17	1.4(3)	O6-C21-C20-C19	179.7(3)
O6-C19-C18-C23	-179.5(3)	O6-C21-C16-C11	-3.1(3)
O6-C19-C25-C29	4.0(3)	O6-C21-C16-C17	179.4(3)
O6-C19-C25-C24	-175.2(2)	O6-C22-C23-C27	-107.0(3)
O6-C20-C21-C17	-5.2(3)	O6-C22-C23-C24	69.2(3)
O6-C20-C21-C22	177.4(3)	O3-C8-C9-C11	-5.4(3)
N1-C20-C21-C17	178.0(3)	O3-C8-C9-C10	177.9(3)
N1-C20-C21-C22	0.6(4)	03-C8-C5-C4	4.9(3)
O1-C9-C8-C7	-1.4(3)	03-C8-C5-C6	-176.8(2)
O1-C9-C8-C10	178.8(2)	O3-C13-C12-C11	4.1(3)
O1-C1-C6-C7	-2.1(3)	O3-C13-C12-C14	-177.9(3)
01-C1-C6-C5	179.8(3)	O8-C27-C23-C24	4.7(3)
01-C1-C2-C3	179.9(3)	O8-C27-C23-C22	-179.0(3)
O3-C11-C16-C17	5.0(3)	O8-C26-C25-C24	0.2(3)
O3-C11-C16-C15	-177.7(2)	O8-C26-C25-C31	-179.3(3)
O3-C11-C12-C13	178.4(3)	O8-C26-C28-C29	179.5(3)
O3-C10-C8-C9	-76.1(3)	01-C6-C5-C8	0.4(3)
O3-C10-C8-C7	104.2(3)	01-C6-C5-C4	178.7(3)
O4-C24-C25-C19	-4.9(3)	01-C6-C7-C2	-178.5(3)
O4-C24-C25-C29	175.9(3)	O1-C10-C9-C11	-178.7(2)
O4-C24-C26-C27	-176.6(3)	01-C10-C9-C8	-1.9(3)
O4-C23-C18-C19	-6.0(3)	O5-C14-C12-C11	-5.3(3)
O4-C23-C18-C17	173.2(2)	05-C14-C12-C13	176.7(2)
O5-C23-C18-C19	174.7(3)	O2-C10-C9-C11	2.8(4)
O5-C23-C18-C17	-6.1(4)	02-C10-C9-C8	179.6(3)

O2-C9-C8-C7	177.5(3)	O7-C27-C23-C24	-176.8(3)
O2-C9-C8-C10	-2.3(3)	O7-C27-C23-C22	-0.5(4)
C16-C11-C12-C13	-1.2(3)	O4-C14-C12-C11	173.8(3)
C16-C17-C18-C19	114.0(2)	O4-C14-C12-C13	-4.2(4)
C16-C17-C18-C23	-65.2(3)	N1-C13-C12-C11	-175.3(3)
C16-C17-C21-C20	-113.4(2)	N1-C13-C12-C14	2.7(4)
C16-C17-C21-C22	63.9(3)	C21-C20-C19-C18	0.6(4)
C16-C15-C14-C13	-0.5(4)	C21-C16-C11-C9	57.5(3)
C11-C12-C13-C14	-0.4(4)	C21-C16-C11-C12	-66.5(3)
C19-C18-C17-C21	-11.0(3)	C21-C16-C17-C18	1.0(3)
C19-C25-C29-C28	-177.4(3)	C9-C11-C12-C13	-13.5(3)
C19-C25-C24-C26	75.7(2)	C9-C11-C12-C14	168.5(2)
C18-C17-C21-C20	12.9(3)	C9-C11-C16-C17	-125.0(2)
C18-C17-C21-C22	-169.8(2)	C9-C8-C5-C4	-173.0(3)
C25-C29-C28-C27	0.7(3)	C9-C8-C5-C6	5.3(3)
C25-C24-C26-C27	2.8(3)	C11-C16-C17-C18	-176.6(3)
C29-C28-C27-C26	-1.5(3)	C5-C4-C3-C2	1.4(3)
C29-C28-C27-C30	177.8(3)	C5-C6-C7-C2	0.9(4)
C24-C26-C27-C28	-0.2(3)	C17-C18-C19-C20	-0.9(4)
C24-C26-C27-C30	-179.5(3)	C23-C24-C25-C26	-1.6(3)
C9-C8-C7-C6	1.1(3)	C23-C24-C25-C31	177.9(3)
C12-C13-C14-C15	1.3(4)	C4-C3-C2-C7	-1.1(4)
C1-C6-C7-C8	0.6(3)	C4-C3-C2-C1	178.1(3)
C1-C6-C5-C4	0.1(3)	C25-C26-C28-C29	0.1(4)
C1-C2-C3-C4	0.5(4)	C25-C31-C30-C29	1.1(4)
C8-C7-C6-C5	178.5(3)	C6-C7-C2-C3	-0.0(4)
C6-C5-C4-C3	0.1(4)	C6-C7-C2-C1	-179.2(3)
C5-C4-C3-C2	-0.4(4)	C26-C28-C29-C30	0.3(4)
		C31-C30-C29-C28	-0.9(5)

Table S4: The results of these parameters, including electron affinity (*EA*), ionization potential (*I*), global hardness (η), global electrophilicity (ω), electronegativity (*X*), chemical potential (μ) and global softness (σ), are estimated with the help of Equations and their outcomes are tabulated

$$IP = -E_{HOMO}$$
(5)

$$EA = -E_{LUMO} \tag{6}$$

$$X = -\frac{\left[E_{LUMO} + E_{HOMO}\right]}{2} \tag{7}$$

$$\eta = -\frac{\left[E_{LUMO} - E_{HOMO}\right]}{2} \tag{8}$$

$$\mu = \frac{E_{HOMO} + E_{LUMO}}{2} \tag{9}$$

$$\sigma = \frac{1}{2\eta} \tag{10}$$

$$\omega = \frac{\mu^2}{2\eta} \tag{11}$$

Table S5: Natural bond orbital (NBO) analysis of investigated compound 4a

Comp.	Donor(i)	Туре	Acceptor(j)	Туре	$E^{(2)a}$ [kcal/mol]	$\underline{E(j)} - \underline{E(i)^{b}(a.u.)}$
C27-C33	π	C12-C17	π^*	34.85	0.34	0.1
C35-C37	π	C22-C29	π*	32.24	0.35	0.097
C9-C21	π	C23-C32	π*	30.54	0.37	0.095
C8-C24	π	C9-C21	π^*	29.64	0.35	0.092
C12-C17	π	C13-C28	π^*	27.03	0.38	0.092
C22-C29	π	C34-C38	π^*	25.91	0.38	0.09
C34-C38	π	C22-C29	π^*	24.89	0.34	0.085
C35-C37	π	C34-C38	π^*	23.43	0.37	0.084
C27-C33	π	C13-C28	π^*	22.89	0.36	0.082
C12-C17	π	C10-C11	π*	21.52	0.38	0.084
C22-C29	π	C26-C30	π*	19.31	0.38	0.082
C26-C30	π	C22-C29	π*	12.31	0.38	0.065
C10-C11	π	C12-C17	π*	11.28	0.39	0.063
C14-C15	π	C14-C15	π*	7.52	0.39	0.051
O6-C18	π	C10-C11	π*	5.04	0.53	0.049
O7-C20	π	C26-C30	π*	4.8	0.54	0.047
C10-C11	π	C10-C11	π^*	2.1	0.41	0.027
C12-C17	π	C12-C17	π*	1.21	0.35	0.019
C14-C15	π	C8-C24	π^*	0.72	0.41	0.016
C8-C24	π	C14-C15	π^*	0.56	0.34	0.013
C11-C18	σ	O1-C10	σ*	6.8	1.2	0.081
C14-C25	σ	O1-C15	σ*	6.51	1.21	0.079
C21-C23	σ	O4-C9	σ*	5.63	1.21	0.074
С27-Н39	σ	C12-C17	σ*	5.11	1.21	0.07
C21-H45	σ	C8-C9	σ*	4.92	1.22	0.069

C8-C24	σ	C8-C9	σ*	4.08	1.4	0.068
C36-H58	σ	C27-C33	σ*	3.98	1.21	0.062
C12-C17	σ	O1-C10	σ*	3.87	1.22	0.061
C26-C31	σ	O3-C20	σ*	3.74	1.13	0.059
C21-C23	σ	C9-C21	σ*	3.51	1.4	0.063
C26-C30	σ	C26-C31	σ*	3.38	1.32	0.06
C9-C21	σ	C8-C16	σ*	3.3	1.26	0.058
C10-C12	σ	O1-C15	σ*	3.28	1.19	0.056
C29-C30	σ	C22-C29	σ*	2.94	1.37	0.057
N2-C15	σ	C14-C16	σ*	2.38	1.41	0.052
O1-C15	σ	N2-H51	σ*	2.07	1.59	0.051
O1-C10	σ	C11-C18	σ*	1.92	1.55	0.049
O5-C17	σ	C12-C13	σ*	1.69	1.66	0.047
С27-Н39	σ	C17-C27	σ*	1.06	1.22	0.032
O7-C20	σ	C26-C30	σ*	0.98	1.9	0.039
C31-H55	σ	C26-C31	σ*	0.65	1.07	0.024
C26-C31	σ	C31-H54	σ*	0.51	1.23	0.022
N2	LP(1)	C14-C15	π^*	77.62	0.36	0.153
O3	LP(2)	O7-C20	π^*	52.97	0.45	0.139
05	LP(2)	O6-C18	π^*	46.77	0.45	0.132
O6	LP(2)	O5-C18	σ*	45.47	0.72	0.164
07	LP(2)	O3-C20	σ*	38.74	0.76	0.155
O3	LP(2)	C22-C29	π*	34.3	0.46	0.117
O4	LP(2)	C9-C21	π*	30.42	0.45	0.112
07	LP(2)	C20-C26	σ*	20.85	0.85	0.122
N19	LP(1)	C14-C25	σ*	12.49	1.2	0.109
05	LP(1)	C12-C17	σ*	8.17	1.24	0.09
O3	LP(1)	C22-C29	σ*	7.63	1.25	0.087
01	LP(1)	C14-C15	σ*	6.94	1.31	0.085
O4	LP(2)	C31-H54	σ*	4.04	0.9	0.055
O6	LP(1)	C11-C18	σ*	3.36	1.3	0.06
O3	LP(1)	O7-C20	σ*	2.99	1.31	0.056
07	LP(1)	C20-C26	σ*	1.89	1.29	0.044
05	LP(1)	C17-C27	σ*	0.98	1.26	0.032
O4	LP(2)	C8-C9	σ*	0.71	1.02	0.025
O4	LP(2)	C26-C31	σ*	0.7	0.87	0.023
O4	LP(1)	С31-Н55	σ*	0.66	1.15	0.025

LP= lone pair, (i) donor; (j) acceptor; E(2) means energy of hyper conjugative interaction (stabilization energy); E(j) - E(i) is the energy difference between donor and acceptor i and j NBO orbitals; F(i, j) is the Fock matrix element between i and j NBO orbitals.

 Table S6: Natural bond orbital (NBO) analysis of investigated compound 4b

	r	D	T	A = = = = A = = = (1)	<u> </u>	$\mathbf{\Gamma}^{(2)}$ $[L - 1/2 + 1]$	$\mathbf{E}(\mathbf{b} = \mathbf{E}(\mathbf{b} \mathbf{b} (\mathbf{a} + \mathbf{a}))$
C	comp.	Donor(<i>l</i>)	1 ype	Acceptor()	<u> </u>	$E^{(2)*}$ [kcai/mol]	$\underline{E(l)} - \underline{E(l)}^{o} (a.u.)$

C16-C19	π	O8-C33	π*	34.95	0.37	0.106
C31-C37	π	C17-C27	π^*	34.78	0.34	0.099
C54-C58	π	C26-C34	π^*	31.26	0.35	0.096
C47-C56	π	C54-C58	π*	29.85	0.36	0.093
C13-C18	π	O6-C30	π*	28.79	0.39	0.098
C12-C49	π	C38-C45	π*	27.77	0.36	0.09
C38-C45	π	C20-C35	π^*	26.34	0.37	0.088
C47-C56	π	C26-C34	π^*	25.09	0.35	0.086
C54-C58	π	C47-C56	π^*	24.25	0.37	0.085
C31-C37	π	C24-C40	π^*	22.98	0.36	0.082
C17-C27	π	C31-C37	π^*	20.63	0.38	0.081
C26-C34	π	C22-C28	π*	17.68	0.39	0.079
C22-C28	π	C26-C34	π*	13.09	0.38	0.067
C13-C18	π	C17-C27	π*	11.26	0.39	0.063
C16-C19	π	C16-C19	π*	7.13	0.39	0.049
O7-C23	π	C22-C28	π*	5.21	0.54	0.049
O6-C30	π	C13-C18	π*	4.95	0.53	0.048
C17-C27	π	C17-C27	π^*	1.09	0.36	0.018
O6-C30	π	O6-C30	π^*	0.87	0.51	0.02
O7-C23	π	O7-C23	π^*	0.78	0.51	0.019
C13-C30	σ	O2-C18	σ*	6.82	1.19	0.08
N9-H11	σ	C16-C19	σ*	5.51	1.39	0.078
C20-H21	σ	C12-C49	σ*	4.87	1.22	0.069
C40-H41	σ	C31-C37	σ*	4.43	1.24	0.066
C35-H36	σ	C38-C45	σ*	4.01	1.23	0.063
C47-C56	σ	C26-C28	σ*	3.99	1.35	0.066
C20-C35	σ	C14-C49	σ*	3.92	1.23	0.062
C_{22} - C_{23}	σ	C22-C28	σ*	3.64	1.23	0.065
C13-C14	σ	C16-C33	σ*	3 27	1.18	0.057
C14-C49	σ	C12-C38	σ*	2.98	1.21	0.056
C34-C54	σ	C54-C58	ۍ* م*	2.65	1.44	0.055
C12-C49	σ	C20-H21	ۍ* م*	2.00	1.34	0.049
C26-C34	σ	C54-H55	ۍ* م*	1.98	1.35	0.046
C13-C14	σ	C13-C30	ۍ* م*	1.82	1.21	0.042
C24-C40	σ	C24-H25	ۍ* م*	1.74	1.34	0.043
C13-C30	σ	C14-C16	ۍ* م*	1.39	1.25	0.037
C14-H15	σ σ	C14-C16	σ*	1.09	1.23	0.03
03-C34	с С	$C^{26}-C^{34}$	с*	0.84	1.65	0.033
C13-C18	с С	02-02-02	с*	0.67	1.00	0.026
$C^{22}C^{28}$	r r	C42-H43	۰ ۲	0.51	1.27	0.020
05	LP(2)	08-033	π^*	59.26	0.43	0.148
03	LP(2)	07-C23	π^*	<u>49</u> 71	0.45	0.135
06	I P(2)	07 - 023	بر ج*	45.71	0.73	0.155
00	LI (2)	07-030	U	7.5.22	0.75	0.104

08	LP(2)	O5-C33	σ*	37.65	0.79	0.156
O4	LP(2)	C17-C27	π^*	35.94	0.45	0.119
O3	LP(2)	C26-C34	π^*	34.52	0.45	0.117
O6	LP(2)	C13-C30	σ*	20.83	0.84	0.121
07	LP(2)	C22-C23	σ*	20.79	0.84	0.121
05	LP(1)	O8-C33	σ*	8.77	1.3	0.096
O4	LP(1)	C17-C27	σ*	8.1	1.24	0.09
O1	LP(2)	C42-H43	σ*	7.96	0.95	0.079
O3	LP(1)	C22-C23	σ*	6.82	1.13	0.079
05	LP(2)	C60-H61	σ*	5.53	0.92	0.067
O1	LP(1)	C42-H44	σ*	4.42	1.11	0.063
08	LP(1)	N9-H10	σ*	3.88	1.35	0.065
O3	LP(1)	O7-C23	σ*	2.83	1.32	0.055
O1	LP(2)	C12-C38	σ*	1.95	1.08	0.042
O4	LP(1)	C27-C31	σ*	0.99	1.26	0.032
05	LP(1)	C13-C14	σ*	0.61	1.13	0.023
08	LP(1)	O5-C60	σ*	0.5	1.14	0.021

LP= lone pair, (i) donor; (j) acceptor; E(2) means energy of hyper conjugative interaction (stabilization energy); E(j) - E(i) is the energy difference between donor and acceptor i and j NBO orbitals; F(i, j) is the Fock matrix element between i and j NBO orbitals.

Table S7: Computed transition energy (eV), absorption wavelengths (nm), oscillator strengths (f_{os}) and transition natures of compounds **4a** and **4b**

Comp.	$a\lambda_{\max}(nm)$	E (eV)	f_{os}	MO contributions
	328.923	3.769	0.0021	H→L (89%), H-1→L+1 (8%)
	306.634	4.043	0.0044	H→L+1 (83%), H-1→L+2 (8%)
4 a	293.336	4.226	0.018	H→L+1 (89%), H-1→L+2 (6%)
	290.558	4.267	0.036	H→L+1 (81%), H-1→L+2 (5%)
	278.504	4.452	0.027	H→L+1 (18%), H-1→L+2 (47%)
	268.579	4.616	0.337	H-1→L (68%), H→L (2%)
	292.498	4.239	0.012	H→L (39%), H-1→L+1 (50%)
	271.300	4.570	0.124	H→L+1 (23%), H-1→L+2 (10%)
4 b	269.513	4.600	0.374	H→L+1 (36%), H-1→L+2 (30%)
	256.951	4.825	0.015	H→L+1 (43%), H-1→L+2 (10%)
	251.494	4.929	0.039	H→L+1 (18%), H-1→L+2 (12%)
	249.134	4.976	0.007	H-1→L (31%), H→L (16%)

aDFT

Table S8: The dipole moment (D) and linear polarizability (esu) values for compounds (4a and 4b)

	4 a	4b		4a ×10 ⁻²³	4b ×10 ⁻²³
$\mu_{\rm xx}$	-5.874	-1.621	α_{xx}	9.678	8.990
μ_{yy}	-0.328	-2.752	α_{yy}	6.448	6.962
μ_{zz}	2.067	-0.632	α_{zz}	4.185	4.146
$\mu_{\rm tot}$	6.236	3.256	$\langle \alpha \rangle$	6.770	6.699

	<u> </u>	
γ	4a × 10 ⁴	4b × 10 ⁴
γ _{xx}	0.102	8.907
Yvv	2.054	3.515
γ_{zz}	2.324	2.031
?tot	0.145	0.145
$\gamma =$ Second hy	perpolarizability (a	esu)

Table S9: The second hyperpolarizability (γ_{tot}) major contributing tensors for compounds (4a and 4b)

Table S10: Calculated vibrational frequencies of compound 4a

_

_

^a Freq	$^{a}I_{IR}$	Exp	Vibrational assignments
3742	120		v(as)(N-H)
3700	501		$\upsilon(N-H) + \upsilon(C-H)$
3509	495	5376	υ(s)(N-H)
3232	7	3372	υ(s) C-H _{Ben}
3222	20	3323	$v(s) + v(as) C-H_{Ben}$
3209	7		$v(s) + v(as) C-H_{Ben}$
3207	5		$\upsilon(s)C-H_{Ben}$
3188	12	3175	v(as) C-H _{Ben}
3161	10		υ(as) C-H _{CH3}
3106	62		υ(as) C-H _{CH3}
3072	21		$\upsilon(s)$ C-H _{CH3}
3056	22		$\upsilon(s)$ C-H _{CH2}
3043	77	2908	$\upsilon(s)$ C-H _{CH3}
2377	113	2381	υ(C-N)
1887	559		υ(C-O)
1845	588		υ(C-O)
1775	528	1719	υ (C-N) + υ (C-C) + υ (C=C-C=O _{pyr})
1724	72		υ (C=C-C=O _{pyr}) + υ (δ)(N-H)
1711	110		$\upsilon (C=C-C=C_{Ben}) + \upsilon(\delta) C-H_{Ben}$
1701	28		υ (C=C-C=C _{Ben})
1665	27	1691	$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$
1644	182	1609	$\upsilon(\delta)(N-H) + \upsilon (C=C-C=O_{pyr})$
1550	10		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$
1519	22		$\upsilon(\rho) \text{ C-H}_{\text{CH2}} + \upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$
1509	55		$\upsilon(\rho) \operatorname{C-H}_{\operatorname{Ben}} + \upsilon(\delta) \operatorname{C-H}$
1479	10		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon(w) \text{ C-H}_{\text{CH3}}$
1444	321	1490	$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=O}_{\text{pyr}})$
1435	49	1452	$\upsilon(w) \operatorname{C-H}_{\operatorname{CH2}} + \upsilon(\rho) \operatorname{C-H}_{\operatorname{Ben}}$
1422	77		$\upsilon(\rho) \text{ C-O} + \upsilon(w) \text{ C-H}_{CH3}$
1389	21		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$
1385	39	1375	$\upsilon(\rho) \text{ C-H}_{Ben} + \upsilon (C=C-C=C_{Ben})$
1358	25		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=O}_{\text{pyr}})$
1315	187		$\upsilon(\rho) \text{ C-H}_{\text{Ben}}$
1289	41	1260	$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C-C=C-O}_{\text{pyr}})$

1253	38		$\upsilon(\rho)$ N-H + υ (C-C=C-O _{pyr})
1228	81	1232	υ (ρ) C-H _{Ben} + υ (ρ) C-H _{CH2}
1192	11		$\upsilon(\rho)C-H_{Ben} + \upsilon(C-C=C-C_{Ben}) + \upsilon(\rho) + (\delta)C-H_{CH3}$
1138	89	1177	$\upsilon(\rho) \text{ C-H} + \upsilon(\rho) \text{C-H}_{CH3}$
1120	118	1118	$\upsilon(\rho) \text{ C-H} + \upsilon(\rho) \text{C-H}_{CH3} + \upsilon (\text{C-C=C-O}_{pyr})$
1089	58		$\upsilon(\rho) + (\delta) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C-C=C-C}_{\text{Ben}})$
1059	13	1072	$\upsilon(\rho)C-H_{CH2} + \gamma (C-H)$
994	16	951	υ (τ) C-H _{CH2} + υ (ρ) C-H _{Ben}
978	14	922	$\upsilon (\tau) + (w)C-H_{Ben}$
892	20		$\upsilon (C=C-C=C_{Ben}) + \upsilon (\tau)C-H_{Ben}$
845	10	861	$\upsilon(\gamma)$ C-H _{Ben} + $\upsilon(w)$ C-H _{Ben}
838	32	815	$\upsilon (C=C-C=C_{Ben}) \upsilon(w) + (\tau)C-H_{Ben}$
775	71		$\upsilon(\gamma)$ N-H + $\upsilon(w)$ C-H _{Ben}
765	44	766	$\upsilon (C=C-C=C_{Ben}) + \upsilon(\gamma)N-H + \upsilon(\gamma)O-H$
606	11	645	υ (C=C-C=C _{Ben}) + $\upsilon(\gamma)$ N-H
573	19	612	υ (C=C-C=C _{Ben}) + $\upsilon(\gamma)$ N-H + $\upsilon(\gamma)$ O-H

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting, Ben=benzene ring, pyr = pyran structure Exp=Experimental values

Table 511. Calculated violational frequencies of compound T

^a Freq	$^{a}I_{IR}$	Exp	Vibrational assignments
3710	91.8		υ(N-H)
3538	135	3466	υ(N-H)
3250	4	3325	υ(s) C-H _{Ben}
3242	9		$v(s) + v(as) C-H_{Ben}$
3241	18		$v(s) C-H_{Ben}$
3231	14		$v(s) + v(as) C-H_{Ben}$
3221	5		v(as) C-H _{Ben}
3206	12		$v(s) + v(as) C-H_{CH3}$
3173	18		v(as) C-H _{CH3}
3148	14		$v(s) + v(as) C-H_{CH3}$
3092	38		υ(s) C-H _{CH3}
3081	18		υ(as) C-H _{CH2}
3075	15		υ(s) C-H _{CH3}
3045	11		$v(s) C-H_{CH2}$
1889	553		υ(C-O)
1879	474		υ(C-O)
1815	346		$\upsilon(C-O) + \upsilon(C-C)$
1769	289	1716	υ (C=C-C=O _{pyr}) + υ (C-O)
1710	241		υ (C=C-C=O _{pyr}) + υ (C-O)
1700	40		υ (C=C-C=C _{Ben})

1693	10	1688	$u(\alpha) + u(\beta) C - H_{p} + u(C = C - C = C_{p})$
1662	13	1000	$v_{(2)} \cap H_{-} + v_{(2)} \cap C_{-} \cap C_{-}$
1655	13	1656	$v(z) C H_{Ben} + v(C = C - C - C_{Ben})$
1655	12	1050	$\nu(\beta) = \mu_{Ben} + \nu(\zeta) = (-\zeta - \zeta - \zeta_{Ben})$
1592	189		$\upsilon(\sigma)$ N-H + $\upsilon(\rho)$ C-H _{Ben}
1568	108	1572	$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon(\delta) \text{ N-H}$
1506	43		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon(\delta) \text{ C-H}$
1497	63	1489	v(w) C-H _{CH3}
1450	67		$\upsilon(w)$ C-H _{CH2}
1433	303	1440	$\upsilon(\delta)$ N-H + υ (C-C=C-O _{pyr})
1380	267	1375	$\upsilon(\rho)$ N-H + $\upsilon(w)$ C-H _{CH3} + υ (C=C-C=C _{Ben})
1345	140		$\upsilon(w) \text{ C-H}_{\text{CH3}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon(\rho) \text{ N-H} + \upsilon(\text{C-O})$
1303	134		$\upsilon(\rho) \text{ C-H}_{\text{Ben}} + \upsilon (\text{C=C-C=C}_{\text{Ben}})$
1278	34	1283	$\upsilon(\rho) \text{ N-H} + \upsilon(\rho)\text{C-H} + \upsilon(\text{C-C=C-O}_{pyr})$
1246	171		$\upsilon(\rho)$ N-H + $\upsilon(\rho)$ C-H _{Ben} + υ (C-C=C-O _{pyr})
1221	160		$\upsilon(\delta)$ C-H _{Ben} + $\upsilon(\rho)$ C-H _{Ben} + $\upsilon(\rho)$ N-H
1197	51		$\upsilon(\rho)C-H_{Ben} + \upsilon(C-C=C-C_{Ben}) + \upsilon(\rho)C-H_{CH3}$
1170	63	1178	$\upsilon(\rho) \text{ C-H} + \upsilon(\rho) \text{C-H}_{CH3}$
1104	213	1147	$\upsilon(\rho) \text{ N-H} + \upsilon(\rho) \text{ C-H} + \upsilon (\text{C-C=C-O}_{pyr})$
1075	75	1071	$\upsilon(\rho)C-H_{Ben} + \upsilon (C-C=C-C_{Ben}) + \upsilon (C-C=C-O_{pyr})$
1042	5		$\upsilon(\rho)C-H_{CH2} + \gamma (C-H)$
980	19	976	$Y (\tau) C-H_{CH2} + \upsilon (\tau) + (w)C-H_{Ben}$
955	21	954	υ (τ) C-H _{CH2} + υ (τ)+ (w)C-H _{Ben}
884	8	867	$\upsilon (C=C-C=C_{Ben}) + \upsilon (\tau)C-H_{Ben}$
837	37		$\upsilon(\gamma)$ C-H _{Ben} + $\upsilon(w)$ C-H _{Ben}
832	13	812	$\upsilon (C=C-C=C_{Ben}) \upsilon (\rho) C-H_{Ben}$
791	44	757	$\upsilon (C=C-C=C_{Ben}) + \upsilon(\gamma)N-H$
735	13		$\upsilon(w) \text{ C-H}_{\text{CH3}} + \upsilon (\text{C=C-C=C}_{\text{Ben}}) + \upsilon(\gamma)\text{N-H}$
659	38	644	υ (C=C-C=C _{Ben}) + $\upsilon(\gamma)$ N-H
543	18		$\upsilon (C=C-C=C_{Ben}) + \upsilon(\gamma)N-H$

Frequencies are given in cm⁻¹, v =stretching, β =in-plane bending, γ =out-plane bending δ =scissoring, ρ =rocking, w= wagging, s =symmetric, as=asymmetric, τ =twisting, Ben=benzene ring, pyr = pyran structure

XRD

DFT

XRD

DFT

4b

Figure S7: Geometrical structures of studied compounds (4a and 4b)

Figure S8: UV-vis graphs of 4a and 4b

LUMO+2

4a

номо-1

LUMO

LUMO+1

4b

Figure S9: The HOMO-LUMO structures of 4a and 4b

Figure S10: Orientation of the 4a molecule along x,y and z axis.

Figure S11: Orientation of the 4b molecule along x,y and z axis.