Supporting Information

In vitro magnetic hyperthermia properties of angle-shaped superparamagnetic iron oxide nanoparticles synthesized by

bromide-assisted polyol method

Hoonsub Kim,^{‡a} Pyung Won Im,^{‡b} Chaedong Lee,^a Hwichan Hong,^a Wooseung Lee,^a Changhyuk Koo,^a Sang Yoon Park,^e Hyung-Jun Im,^{*abc} Sun Ha Paek,^{*bcd} and Yuanzhe Piao^{*ae}

^a Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-si, Gyeonggi-do, 16229, Republic of Korea. Email : <u>iiihjjj@snu.ac.kr</u>

^b Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea. Email : <u>paeksh@snu.ac.kr</u>

^c Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.

^d Department of Neurosurgery, Hypoxia/Ischemia Disease Institute, Seoul National University, Seoul 03080, Republic of Korea.

^e Advanced Institutes of Convergence Technology, Suwon-si, Gyeonggi-do, 16229, Republic of Korea. E-mail : <u>parkat9@snu.ac.kr;</u> Tel : +82 31 888 9141

‡ These authors contributed equally.

Fig. S1 Chemical structure of branched polyethyleneimine (b-PEI).

Fig. S2 Surface charges of angle-shaped SPIONs synthesized (A) without b-PEI and (B) by adding b-PEI in D.W..

Fig. S3 TEM images of angle-shaped SPIONs synthesized with (A) 20.8 mM, (B) 62.5 mM, (C) 83.3 mM, and (D) 333.3 mM KBr.

Fig. S4 Photographs of the water suspension of angle-shaped SPIONs in magnetic field after (A) 0 sec, (B) 30 sec, and (C) 60 sec.

Concentration of KBr (mM)	0	20.8	62.5	83.3	333.3	666.7
Specific absorption rate(SAR) (W/g)	2.092	8.368	14.644	25.104	50.208	4.184
Intrinsic loss power(ILP) (nH*m ² /kg)	0.0168	0.0671	0.1174	0.2012	0.4024	0.0335

Fig. S5 Values of specific absorption rate and intrinsic loss force calculated using the initial slope of Fig. 5A.

 \cdot Specific absorption rate (SAR)

$$SAR = \frac{C_p}{m_{NP}} * \frac{\Delta T}{\Delta t} W/g$$
$$C_p = C_{water} = 4.184 J/g * K$$
$$m_{NP} = 0.02 g$$

 $\Delta T/\Delta t = intial \ slope \ of \ delta \ temperature \ gragh$

• Intrinsic loss power (ILP) $ILP = \frac{SAR}{f * H^2} nH * m^2/kg$ f = 100 kHz $H = 140 \ Oe = 11.17 \ kA/m$

Fig. S6 Cell images of cancer cell lines after magnetic hyperthermia. (A) is images of U87MG-GFP cell lines, and (B) is FSall-GFP cell lines. AMF and NP+AMF groups are applied 100 kHz, 140 Oe. NP and NP+AMF groups were added angle-shaped SPIONs (100 μ g/mL) to the medium.