Catalytic Performance of Tridentate Versus Bidentate Co(II) Complexes Supported by Schiff Base Ligands in Vinyl Addition Polymerization of Norbornene

Kyeonghun Kim,^{1†} Saira Nayab,^{1,2†} Yerim Cho,¹ Hyewon Jung,⁴ Hyeonuk Yeo,³ Hyosun Lee,^{1*} and Sang-Ho Lee^{4*}

¹Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea

²Department of Chemistry, Shaheed Benazir Bhutto University Sheringal Dir (Upper) 18000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan

³Department of Chemistry Education and Department of Pharmacy, Kyungpook National University, Daegu, 41566, Republic of Korea

⁴Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology,

Ulsan 44412, Republic of Korea

[†]These authors contributed equally to this work.

*Authors for correspondence: (S.-H. L.) slee@krict.re.kr; (H. L.) hyosunlee@knu.ac.kr

ane-1,2-

ine (L_B).

Figure S7. FT-IR spectrum of L_A (top) and $[L_ACoCl_2]$ (bottom).

Figure S8. FT-IR spectrum of L_B (top) and [L_BCoCl_2] (bottom).

(A) $[L_BCoCl_2]$

(B) $[L_C CoCl_2]$

Figure S9. Elemental analysis of the synthesized (A) $[L_BCoCl_2]$ and (B) $[L_CCoCl_2]$.

Figure S10. ¹H NMR spectra of polynorbornenes (PNBs) using (A) $[L_BCoCl_2]$ and (B) $[L_CCoCl_2]$ in CDCl₃.

Figure S11. ¹³C NMR spectra of polynorbornenes (PNBs) using (A) $[L_BCoCl_2]$ and (B) $[L_CCoCl_2]$ in CDCl₃.

Figure S13. Screening of conditions for $[L_BCoCl_2]$ catalyzed addition polymerization of norbornene depending on amount of MMAO cocatalyst.

	[L _B CoCl ₂]	[L _C CoCl ₂]
Empirical formula	$C_{14}H_{16}Cl_2C_0N_2O$	C ₉ H ₁₄ Cl ₂ CoN ₂ S
Formula weight	358.12	321.11
Temperature (K)	293(2)	220(2)
Wavelength (Å)	0.650	0.630
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁ /n	P2 ₁ /c
a (Å)	8.3140(17)	9.7710(19)
b (Å)	11.697(2)	11.046(2)
c (Å)	15.790(3)	12.622(3)
α (°)	90	90
eta (°)	98.79(3)	108.05(3)
γ (°)	90	90
Volume (Å ³), Z	1517.5(5), 4	1295.3(5), 4
Density (calculated) (Mg m ⁻³)	1.567	1.601
Absorption coefficient (mm ⁻¹)	1.146	1.324
F(000)	732	636
Crystal size (mm ³)	$0.08 \times 0.05 \times 0.02$	0.03 x 0.03 x 0.02
Theta range for data collection (°)	2.387 to 29.506	1.943 to 33.447
Index ranges	$-11 \le h \le 11, -17 \le k \le 17, -23 \le l \le 23$	$-15 \le h \le 15, -19 \le k \le 19, -21 \le l \le 21$
Reflections collected	19291	20842
Independent reflections	5283 [R(int) = 0.0453]	6206 [R(int) = 0.0801]
Completeness to theta	97.6 %	100.0 %
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	5283 / 0 / 182	6206 / 0 / 138
Goodness-of-fit on F ²	0.765	10.1213
Final R indices [I>2sigma(I)]	$R_1 = 0.3990$	$R_1 = 0.0672$
	$wR_2 = 0.1101$	$wR_2 = 0.2077$
R indices (all data)	$R_1 = 0.0407$	$R_1 = 0.0898$
	$wR_2 = 0.1121$	$wR_2 = 0.2205$
Largest diff. peak and hole (e. Å-3)	0.775 and -1.208	1.788 and -1.762

Table S1. Crystal data and structure refinements of $[L_BCoCl_2]$ and $[L_CCoCl_2]$.

[L _B CoCl ₂]		[L _C Co	[L _C CoCl ₂]		
Bond lengths (Å)					
Co(1)-N(2)	2.0509(12)	Co(1)-N(1)	2.040(2)		
Co(1)-N(1)	2.1827(12)	Co(1)-N(2)	2.078(2)		
Co(1)-Cl(2)	2.2767(6)	Co(1)-Cl(2)	2.2428(9)		
Co(1)-Cl(1)	2.333(2)	Co(1)-Cl(1)	2.2365(10)		
Co(1)-O(1)	2.212(12)	N(1)-C(5)	1.278(3)		
O(1)-C(13)	1.4406(19)	N(1)-C(6)	1.487(4)		
N(2)-C(10)	1.2798(17)	S(1)-C(1)	1.663(4)		
Bond angles (°)					
N(2)-Co(1)-N(1)	107.14(4)	N(1)-Co(1)-N(2)	85.14(9)		
N(2)-Co(1)-O(1)	118.68(3)	N(1)-Co(1)-Cl(1)	111.57(7)		
N(1)-Co(1)-O(1)	124.14(3)	N(1)-Co(1)-Cl(2)	112.84(8)		
N(2)-Co(1)-Cl(1)	101.12(3)	Cl(1)-Co(1)-Cl(2)	106.76(7)		
N(1)-Co(1)-Cl(1)	95.62(3)	C(5)-N(1)-C(6)	114.7(2)		
O(1)-Co(1)-Cl(1)	104.57(2)	C(5)-N(1)-Co(1)	135.25(19)		
N(2)-Co(1)-Cl(2)	105.75(9)	C(6)-N(1)-Co(1)	109.55(16)		
N(1)-Co(1)-Cl(2)	130.62(8)	C(1)-S(1)-C(4)	93.03(17)		
O(1)-Co(1)-Cl(2)	121.72(8)	C(2)-C(1)-S(1)	113.9(3)		
Cl(1)-Co(1)-Cl(2)	111.11(1)	C(9)-N(2)-C(7)	109.3(2)		

Table S2. Selected bond lengths (Å) and angles (°) of $[L_BCoCl_2]$ and $[L_CCoCl_2]$.

Entry	Catalanta	D - C - h	Yield. ^c Activity ^d		M _n ^e (g/mol)		
	Catalyst ^a	Katio	(%)	(g/mol Cat·h)×10 ⁴	×10 ⁵ (GPC)	ГЛІ	
1	[L _B CoCl ₂]	1:100:1000	6.3	0.30	1.77	1.38	
2	[L _B CoCl ₂]	1:200:1000	52.2	2.70	1.41	1.50	
3	[L _B CoCl ₂]	1:300:1000	57.1	2.96	1.62	1.46	
4	[L _B CoCl ₂]	1:400:1000	67.1	3.48	1.46	1.52	
5	[L _B CoCl ₂]	1:500:1000	89.1	4.22	1.25	1.59	
6	[L _B CoCl ₂]	1:1000:1000	74.8	3.54	1.05	1.86	

Table S3. The polymerization of norbornene by $[L_BCoCl_2]$ in the presence of various [A1]/[Co] ratios.

^{*a*}[Co(II) catalyst]0 = 15 µmol, [norbornene]₀/[MMAO]₀ = 65 mM, polymerization solvent, 20 mL of chlorobenzene; polymerization temperature = 25 °C; polymerization time = 2 h . ^{*b*}Yield is defined as a mass of dried polymer recovered/mass of monomer used. ^{*c*}Activity is calculated as (gPNB mol cat⁻¹ h⁻¹). ^{*d*}M_n refers to the number average molecular weights of PNB and determined by GPC eluted with chloroform at room temperature, related to PS standard.

Entry ^a	Catalyst ^a	Time (min)	Yield ^b (%)	Activity ^c	$M_{ m n}{}^{ m d}$	PDI
				(g/mol Cat∙h)×10⁴	(g/mol)×10 ⁵	
1	$[L_C C_0 Cl_2]$	5	56.4	64.1	1.51	1.43
2	[L _C CoCl ₂]	10	60.2	34.2	1.35	1.55
3	[L _C CoCl ₂]	20	64.4	18.3	1.34	1.54
4	[L _C CoCl ₂]	30	66.7	12.6	1.34	1.55
5	[L _C CoCl ₂]	60	76.9	7.28	0.89	1.85
6	[L _C CoCl ₂]	90	80.1	5.06	1.48	1.43
7	[L _C CoCl ₂]	120	98.9	4.69	2.40	1.13

Table S4. The polymerization of norbornene by $[L_CCoCl_2]$ in the presence of MMAO with increasing reaction time.

^{*a*}[Co(II) catalyst]0 = 15 µmol, [norbornene]₀/[MMAO]₀/[Co(II) catalyst]₀ = 1000:500:1, polymerization solvent, 20 mL of chlorobenzene; polymerisation temperature = 25 °C. ^{*b*}Yield is defined as a mass of dried polymer recovered/mass of monomer used. ^{*c*}Activity is calculated as (gPNB mol cat⁻¹ h⁻¹). ^{*d*}M_n refers to the number average molecular weights of PNB and determined by GPC eluted with chloroform at room temperature, related to PS standard.

Entry	Catalyst ^a	Solvent	Temp. (°C)	Yield ^b (%)
1	[L _A CoCl ₂]	chlorobenzene	25	72.7
2	[L _A CoCl ₂]	dichloroethane	25	>10.0
3	[L _A CoCl ₂]	Toluene	80	69.3
4	[L _B CoCl ₂]	chlorobenzene	25	89.1
5	[L _B CoCl ₂]	dichloroethane	25	60.1
6	[L _B CoCl ₂]	Toluene	80	68.0
7	[L _C CoCl ₂]	chlorobenzene	25	98.9
8	[L _C CoCl ₂]	dichloroethane	25	20.9
9	[L _C CoCl ₂]	Toluene	80	64.5

Table S5. The polymerization of norbornene catalyzed by $[L_nCoCl_2]/MMAO$ ($L_n = L_A-L_C$)

system in various solvents.

^{*a*}[Co(II) catalyst]₀ = 15 μ mol, [norbornene]₀/[MMAO]₀/[Co(II) catalyst]₀ = 1000:500:1, polymerization solvent, 20 mL of chlorobenzene or dichloroethane or toluene; polymerization time = 2 h. ^{*b*}Yield is defined as a mass of dried polymer recovered/mass of monomer used. ^{*c*}Activity is calculated as (gPNB mol cat⁻¹ h⁻¹).