Supplementary Information

Phyto-Synthesized Facile Pd/NiOPdO Ternary Nanocomposite for Electrochemical Supercapacitor Applications

Irum Shaheen^{a,d}, Khuram Shahzad Ahmad^{a*} Camila Zequine^b, Ram K. Gupta^b,

Andrew G. Thomas^c, Anjum Qureshi,^d Mohammad Azad Malik^c and Javed H. Niazi^d

^aDepartment of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi,

Pakistan.

^bDepartment of Chemistry, Pittsburg State University, 1701 South Broadway Street

```
Pittsburg, KS 66762, USA.
```

^cDepartment of Materials, Photon Science Institute and Sir Henry Royce Institute, Alan

Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

^dSabanci University, SUNUM Nanotechnology Research and Application Center, Orta Mah.

Tuzla 34956 Istanbul, Turkey.

*Email: chemist.phd33@yahoo.com; dr.k.s.ahmad@fjwu.edu.pk.

Electrochemical Measurement

Electrochemical characterizations of synthesized nanomaterial were carried out using three electrode system VersaSTAT 4-500 electrochemical workstation (Princeton Applied Research, USA).

Cyclicvoltammetry (CV): CV was performed by cycling the potential of fabricated electrodes and then measured the corresponding current densities. The purpose of CV was to monitor the redox (oxidation-reduction) behavior of the electrode material within an applied potential range. In the present study, CV analysis of all fabricated electrodes was carried out at scan rate ranged from 2-300 mV/s and at potential window of 0-0.6 V. The current at the prepared electrodes was monitored as a triangular excitation potential was applied. The integrated area of CV curve is significantly important as it reflects the capacitance of the electrode. The

specific capacitance (C_{sp}) of the fabricated electrodes was calculated using following relation. 5-6,24

$$C_{sp} = \frac{\int IdV}{v.\,\Delta V.A}....(1)$$

Where, $\int I dV$ is integral area of CV curve, *v* is scan rate, ΔV is the potential window and A is active area of electrode material on the electrode (or mass of active material on electrode).

Galvanostatic charge–discharge (GCD): Galvanostatic charge discharge (GCD) was also used to study the behavior of electrodes at different current densities. GCD was used to calculate the capacitance of the prepared electrodes. ²⁴ The GCD profile for the investigated electrodes was recorded at the applied current density ranged from 0.5-30 A/g. At each current density C_{sp} was calculated using the following equation. ^{5-6, 19,24}

$$C_{sp} = \frac{I \times \Delta t}{\Delta V \times m_{\dots,2}}$$

Where, I is the discharge current (A), Δt is the discharge time (s), ΔV is the potential window (V), and m is the mass (g) of the electrodes.

Energy density (E) and power density (P): In order to calculate energy density in the three electrode system following equations were used for making an theoretical 2 electrode symmetric configuration. Based on GCD data, energy density (E) and power density (P) of fabricated electrode were estimated using discharge voltage and the discharge capacitance by following equations. ⁵⁻⁶

$$E = \frac{C\Delta V2}{7.2} \dots 3$$
$$P = \frac{E(3600)}{t} \dots 4$$

Where, C (F/g) is capacitance via galvanostatic charge discharge, ΔV (V) is the potential window and t (s) is the discharge time. E and P are expressed as W h/Kg and W/Kg in the present study.