
Supporting information

The Influences of AlGaN barrier epitaxy in multiple quantum wells on the optoelectrical properties of AlGaN-based deep ultra-violet light-emitting diodes

Tien-Yu Wang¹, Wei-Chih Lai^{*1,2}, Qiao-Ju Xie¹, Shun-Hao Yang¹, Sheng-Po Chang^{1,2,3}, Cheng-Huang Kuo⁴, and Jinn-Kong Sheu^{1,2}

¹Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan ²Advanced Optoelectronic Technology Center, Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan ³Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan ⁴Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan

*weilai@ncku.edu.tw

Fig. S1 (a) The epitaxial structure of the AlGaN-based DUV LEDs. (b) The schematic of the fabricated flip-chip DUV LED.

The polarization-dependent EL spectra were measured for the DUV LEDs varying the AlGaN barrier growth rate. With lowering the AlGaN barrier growth rate, the TE-polarized EL intensity increased. Accordingly, the DOP in the DUV LEDs increased as the AlGaN barrier growth rate was reduced.

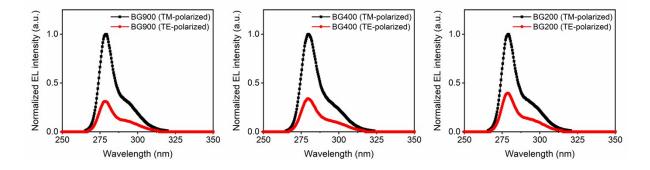


Fig. S2 Polarization-dependent EL spectra of the DUV LEDs varying AlGaN barrier growth rate.

Al _{0.7} Ga _{0.3} N barrier	400 nm
n-Al _{0.6} Ga _{0.4} N	1.5 μm
Transition layers	0.6 µm
AIN	3 µm
Sapphire	

Fig. S3 The epitaxial structure of the AlGaN barrier layer for the measurement of AlN (104) X-ray diffraction reciprocal space mapping.