Appendix I

S/N	Structures of 1,7-Naphthyridine Analogs	IC50
1	N N Br	0.61
	HN	
2	O NH ₂ Br	3.000
3	O NH ₂ Br	7.45
4	H ₂ N O NH ₂	0.089
5		0.65
	NH NH	
6		0.82

Dataset S1: Structure of 1,7-naphthyridine Analogues and Their Corresponding pIC50

Appendix II

ANN and SVM Hyperparameter optimization

Figure 1: Contour Plot of Optimization of Learning rate and Momentum 2D.

Figure 2: Optimization of Complexity Parameter as a function of RMSE for SVM model development

Figure3: 3D Response Surface Plot for Optimization of Complexity Parameter and Gamma

Figure 4: Optimization number of Nodes in the Hidden Layer

Table 1: Summary of Hyperparameter values for Global optimization

Kernel			Optimal Parameters			Training Set		LOO-CV Set	
	σ	ω	E	С	γ	R _{TR}	RMSE _{TR}	Q _{CV}	RMSE _{CV}
Polynomial			32.0	5.0		0.9410	0.3518	0.6310	0.3564
PUK	1.0	1.0				0.9559	0.2765	0.6653	0.5385
RBF				10	-14	0.9737	0.2774	0.6793	0.5045

Appendix III

Molecular Descriptors

Table 1: List of Molecular Descriptors

Compound	ATSC7p	MATS8c	MATS6i	SpMin2_Bh	SpMin5_Bh	SpMax8_Bh	Kier3
S				v	e	i	
1	-3.95020	-0.04155	-0.16174	1.926035	1.180851	2.8922	4.71626
							9
2	-3.80767	0.04837	-0.25845	1.896522	1.094336	2.838079	4.71626
		9					9
3	-3.14083	-0.05434	-0.22777	1.925811	1.153203	2.841426	4.46597
							5
4	-1.93283	-0.04922	-0.18782	1.925112	1.14442	2.838079	4.41145
							8
5	-5.72512	-0.03381	-0.15233	2.048158	1.463167	3.258753	6.29716
							3
6	-3.17196	0.05368	-0.16565	2.032161	1.413584	3.139477	7.15856
		2					6
7	-5.5976	-0.03571	-0.12193	2.047613	1.442135	3.314672	6.02770
							1
8	-3.55278	0.00236	-0.15931	2.047952	1.449371	3.259178	6.71604
		3					9
9	-2.81149	0.04469	-0.08466	2.032097	1.399019	3.172670	7.85318
		9					6
10	-0.38008	0.11434	-0.18244	2.032189	1.396213	3.144387	6.78186
		2					7
11	2.36972	0.00011	-0.15941	2.033125	1.517697	3.203577	7.50617
	2	5					3
12	1.50518	-0.00278	-0.13892	2.032897	1.513502	3.397291	7.13086
	8						4
13	-4.4786	-0.02114	-0.17131	2.047466	1.433013	3.193821	5.64337

							8
14	-1.82201	-0.06844	-0.19096	2.032683	1.511198	3.386397	7.32421
							2
15	-4.53702	-0.02509	-0.19042	2.045349	1.447604	3.140539	6.04914
10	F 20070	0.02424	0.00454	2.045644	4.447200	2 4 2 6 0 4 0	9
16	-5.20679	-0.03431	-0.23451	2.045644	1.447398	3.136040	6.04914
17	1 02252	0.05207	0 10160	2.045766	1 210102	2 059045	9
17	1.02332	0.03207	-0.10109	2.043700	1.319193	2.938043	4.54179
18	-1.00878	0.00143	-0.17716	2.042989	1.318933	2.955129	4.00941 8
19	-4 71081	-0.04778	-0 10722	2 046918	1 461972	3 177501	5 64446
10		0.01770	0.10722	2.010310	1.101372	3.177301	4
20	-3.61538	-0.05888	-0.14333	2.042578	1.46212	3.177500	5.64446
							4
21	-3.58517	-0.07887	-0.13466	2.055893	1.464189	3.177524	5.64446
							4
22	-3.65806	-0.07471	-0.15681	2.064214	1.475226	3.258753	6.12345
							7
23	-4.15352	-0.04259	-0.15083	2.058152	1.465346	3.258753	6.12345
24	4 10079	0.04427	0 1 4 0 0 4	2 054629	1 462604	2 250752	/ E 077EE
24	-4.10078	-0.04437	-0.14094	2.054038	1.403004	3.258753	5.87755
25	-3 52711	-0.08786	-0.09773	2 056829	1 464181	3 258752	6 12345
	0.02722	0.007.00	0.00770	21000020	11101101	0.200702	7
26	-3.53764	-0.06853	-0.13936	2.055827	1.464209	3.187472	5.87755
							1
27	-4.8505	-0.07001	-0.14291	2.056505	1.464581	3.258753	6.29716
							3
28	-4.60756	-0.09537	-0.12422	2.046544	1.461953	3.177681	5.81421
20	Г 12200	0.0047	0.14002	2.042520	1 402012	2 1775 (2)	5
29	-5.12309	-0.0947	-0.14002	2.043529	1.462612	3.177562	5.81421
30	-5 26967	-0.08415	-0 14542	2 052993	1 471692	3 179297	5 81421
50	5.20507	0.00413	0.14542	2.052555	1.471052	3.175257	3.01421
31	-5.51165	-0.08406	-0.14185	2.0469	1.464074	3.187821	6.04914
_							9
32	-4.66608	-0.09464	-0.14404	2.046439	1.461943	3.177881	5.81421
							3
33	-3.82882	-0.04824	-0.12863	2.089072	1.468597	3.255969	5.64446
							4
34	-4.22443	-0.04728	-0.13133	2.094364	1.472362	3.180344	5.64446
		0.04046	0.40000	2.040405	4 462 447	2 4 6 7 6 4 5	4
35	-4.44549	-0.04341	-0.12222	2.048186	1.462417	3.19/044	ь.12345 ¬
26	_5 1157	0 0 2 2 4 5	_0.21/00	2 028062	1 300646	3 126022	5 95691
50	-5.1157	5.02243	-0.21433	2.020903	1.550040	3.130333	5.55004
1	1		1	1	1	1	1

37	-6.00225	0.01532	-0.15575	2.028308	1.390342	3.01493	5.71315
		3					2
38	-4.35888	-0.09383	-0.13558	2.043795	1.462886	3.177633	5.81421
							3
39	-4.82362	-0.09894	-0.12357	2.046752	1.464969	3.187385	6.04914
							9
40	-3.71992	-0.06653	-0.1415	2.086564	1.472871	3.214962	5.64446
							4
41	-5.33839	-0.04621	-0.11078	2.054323	1.471689	3.179299	5.71315
							2
42	-4.99965	-0.07626	-0.12628	2.080494	1.510711	3.229736	5.88710
							9
43	-5.06222	-0.07824	-0.12505	2.082599	1.515043	3.233094	5.88526
44	-5.1248	-0.08022	-0.12381	2.084704	1.519375	3.236451	5.88341

Table 2: Description of Molecular Descriptors

Descriptor	Class	Туре	Description
ATSC7p	2D	Autocorrelation	Centered Broto-Moreau Autocorrelation
			descriptor of lag 7 weighed by
			polarizabilities
MATS8c	2D	Autocorrelation	Moran Autocorrelation descriptor of lag 7
			weighed by charges
MATS6i	2D	Autocorrelation	Moran Autocorrelation descriptor of lag 6
			weighed by ionization potential
SpMin2_Bhv	2D	Burden Modifiied Eigenvalue	Burden Matrix of the H-filled molecular
			graph weighted by volume
SpMin5_Bhe	2D	Burden Modified Eigenvalue	Burden Matrix of the H-filled molecular
			graph weighted by electronegativities
SpMax8_Bhi	2D	Burden Modified Eigenvalue	Burden Matrix of the H-filled molecular
			graph weighted by first ionization
			potentials
Kier3	2D	Kappa Shape Indices	Kappa shape index descriptor; describes
			the importance of molecular topology