Supporting Information

Fabrication and catalytic property of nanorod-shaped (Pt-Pd)/CeO₂ composites

Haiyang Wang^{a,1}, Wenyuan Duan^{a,1}, Ruiyin Zhang^a, Hao Ma^a, Cheng Ma^a, Miaomiao Liang^b, Yuzhen Zhao^a, Zongcheng Miao^{a,c,*}

^a Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy

Conversion Device, Key Laboratory of Organic Polymer Photoelectric Materials,

School of Electronic Information, Xijing University, Xi'an, 710123, PR China

^b School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi, 710048, P.R. China

^c School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P.R. China

¹ These authors contributed equally to this work.

* E-mail: miaozongcheng@nwpu.edu.cn

Fig. S1 Fabrication schematic of (Pt-Pd)/CeO₂

Fig. S2 (a) XRD patterns of melt-spun Al-Ce-Pt-Pd ribbons and dealloyed $Al_{91.7}Ce_8Pt_{0.1}Pd_{0.2}$ ribbons; (b) the EDS mapping of $(Pt_{0.1}-Pd_{0.2})/CeO_2$

Fig. S3 SEM images of (Pt_{0.1}-Pd_{0.2})/CeO₂ obtained at varied calcination temperature with different magnifications: (a) 0 °C, (b) 300 °C, (c) 500 °C

Fig. S4 The Raman spectrum of pure CeO_2

Fig. S5 The three repeated catalytic performance tests of $(Pt_{0.2}-Pd_{0.1})/CeO_2$ catalyst

Sample	Preparation	Test condition	T ₅₀ (°C)	T ₉₉ (°C)	Reference
	Method				
Pd/Pr-CeO ₂ -5%	Hydrothermal synthesis	1% CO, 99% dry air	/	160	41
Ir/CeO ₂	wet chemical reduction	1% CO	/	110	42
Pd/Ce _{0.7} Zr _{0.3} O ₂	Hydrothermal method	1.0% CO, $0.5%$ O ₂ , N ₂ balance,	/	100	43
Co ₃ O ₄ @CeO ₂	Hydrothermal method	1% CO, 99% air	/	160	44
Pt/CeO ₂	Electrostatic Adsorption	1% CO, 20% O ₂ , He balance	140	/	45
(Pt _{0.1} -Pd _{0.2})/CeO ₂	Dealloying and calcination	1% CO, 10% O ₂ , 89% N ₂	75	100	This work

Table S1 Comparison on catalytic performance of $(Pt_{0.1}-Pd_{0.2})/CeO_2$ with previous

reports