Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Rhodium-catalyzed selenylation and sulfenylation of quinoxalinones 'on water'

Ram Sunil Kumar Lalji^{a,b} Prince^a, Mohit Gupta^{a,d}, Sandeep Kumar^a, Amit Kumar^c and Brajendra Kumar Singh^{a*}

Supporting Information

Content

1. General Information	S2
2. Experimental Section	
2.1 General procedure for the synthesis of compounds 3a-3n and 5a-5r	S2
2.2 Procedure for late-stage modification to afford compound 7	S3
2.3 Procedure for late-stage modification to afford compound 10	S3
2.4 Procedure for late-stage modification to afford compound 11	S3
2.5 Procedure for late-stage modification to afford compound 12	S3
2.6 Procedure for the synthesis of compound 14	S4
3. Analytical data	S5-S17
4. Copies of ¹ H NMR and ¹³ C NMR Spectra	S18-S59
5. Investigation of deuterium kinetic isotope effects	
5.1 Preparation of deuterium-labelled 1-ethyl-3-phenylquinoxalin-2(1H)-one	S60-61
and calculation of percentage purity (3a [D ₂])	
5.2 H/D exchange experiment in the presence of 2a	S61
5.3 Deuterium kinetic isotope studies	S62-65
8. Single Crystal data	S66-67
9. References	S68

 ^a Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
^b Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
^c Department of Chemistry, IIT, Patna, Bihar-801106, India
^d Department of Chemistry, L.N.M.S. College, Birpur, Supaul, Bihar-8543340, India

1. General Information

All the experiments were carried out in an oven-dried screw-capped reaction vial under conventional heating. Commercial reagents were purchased from Sigma-Aldrich, Alfa Aeser, Acros, TCI and other commercial suppliers and used as received without further purification. The analytical TLC was performed using 0.20 mm silica gel 60F plates with a 254 nm fluorescent indicator. The TLC plates were visualised by using ultra-violet light. Column chromatography was done using 150-230 mesh silica gel. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on JEOL ECX-400P NMR or Brucker at 400 MHz and 100 MHz respectively using TMS as the internal standard and are reported as chemical shifts (δ) in parts per million (ppm). The spectra were measured in CDCl₃ (TMS, ¹H δ = 0; CDCl₃, ¹H δ = 7.26, ¹³C δ = 77.16) or DMSO-d₆ (TMS, ¹H δ = 0; DMSO-d₆, ¹H δ = 2.50, ¹³C δ = 39.52). The coupling constants (*J*) are reported in Hz. The following abbreviations are used for explaining the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. HRMS (m/z) were recorded using an Agilent Technology 6530, Accurate mass, Q-TOF LCMS spectrometer. Melting points were recorded on a Buchi M-560 melting point apparatus and are uncorrected. Single crystal was recorded in a Bruker Kappa APEC2 CCD Diffractometer with MoKα radiation. The structures were solved by SHELXT and refined with SHELX. 1-alkyl-3-phenylquinoxalin-2(1H)-ones were prepared following the literature procedure. ¹⁻³

2. Experimental Section

In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of 1-ethyl-3-phenylquinoxalin-2(1*H*)-one **1a** (0.2 mmol, 1.0 equiv.), diphenyl disulfides/diphenyl diselenides **2a/4a** (0.4 mmol, 2 equiv.), silver triflimide (60 mol%), Ag₂CO₃ (0.2 mmol, 1 equiv.), $[Cp*RhCl_2]_2$ (5 mol%) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. After 24 h, the reaction

Figure 1. Pictures of the reaction vial **a**. before decanting water **b**. after decanting water

was stopped and the reaction mixture was cooled to ambient temperature. As shown in the above Figure 1, the water from the reaction vial was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane /ethyl acetate as eluent to afford the targeted products **3a-3n** and **5a-5r**.

2.2 Procedure for late-stage modification to afford compound 7

Compound **6** was prepared as per the available literature.³ In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of **6** (0.128 mmol), diphenyl disulfide (2 equiv.), silver triflimide (60 mol %), Ag_2CO_3 (1 equiv.), $[Cp*RhCl_2]_2$ (5 mol %) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. After 24 h reaction was stopped and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane/ethyl acetate as eluent to give the pure targeted product in 52% yield.

2.3 Procedure for late-stage modification to afford compound 10

Compound **8** was prepared as per the available literature.³ In an oven-dried screw-capped **10** mL reaction vial with a stirring bar was charged with a mixture of **8**, (0.1468 mmol), diphenyl disulfide (2 equiv.), silver triflimide (60 mol %), Ag_2CO_3 (1 equiv.), $[Cp*RhCl_2]_2$ (5 mol %) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. After 24 h reaction was stopped and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane/ethyl acetate as eluent to give the pure targeted product **10** in 58% yield.

2.4 Procedure for late-stage modification to afford compound 11

Compound **9** was prepared as per the available literature.⁴ In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of **9**, (0.1621 mmol), diphenyl diselenide (2 equiv.), silver triflimide (60 mol %), Ag_2CO_3 (1 equiv.), $[Cp*RhCl_2]_2$ (5 mol %) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. After 24 h reaction was stopped and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane/ethyl acetate as eluent to afford the pure targeted product **11** in 91% yield.

2.5 Procedure for late-stage modification to afford compound 12

Compound **9** was prepared as per the available literature.⁴ In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of **9**, (0.1621 mmol), diphenyl

disulfide (2 equiv.), silver triflimide (60 mol %), Ag₂CO₃ (1 equiv.), [Cp*RhCl₂]₂ (5 mol %) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. After 24 h reaction was stopped and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane/ethyl acetate as eluent to afford the pure targeted product **12** in 88% yield.

2.6 Procedure for the synthesis of compounds 14

Compound **13** was prepared as per the available literature.⁵ In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of **13**, (0.242 mmol), diphenyl diselenide (2 equiv.), silver triflimide (60 mol %), Ag_2CO_3 (1 equiv.), $[Cp*RhCl_2]_2$ (5 mol %) and 1.5 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by slowly heating at 110 °C (oil bath temperature). The progress of the reaction was monitored using TLC. Then after the reaction was stopped and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane/ethyl acetate as eluent to afford the pure targeted product **14** in 56% yield.

3. Analytical data

1-ethyl-3-(2-(phenylselanyl)phenyl)quinoxalin-2(1*H*)-one (3a)

C₂H₅ N N Se Colour and physical state: Pale yellow solid

Yield: 94% (76 mg)

Melting point:139-141 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.08 (dd, J = 7.7, 1.6 Hz, 1H), 8.00 (dd, J = 8.4, 1.6 Hz, 1H), 7.59 (td, J = 7.7, 1.6 Hz, 1H), 7.54 (dd, J = 7.4, 2.0 Hz, 2H), 7.40 – 7.37 (m, 1H), 7.32 (m, J = 15.4, 7.6, 7.1, 1.3 Hz, 3H), 7.27 – 7.26 (m, 1H), 7.25 (d, J = 1.2 Hz, 1H), 7.21 (m, J = 7.6, 1.6 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 155.31, 154.17, 136.94, 135.57, 135.04, 132.93, 132.67, 132.60, 132.38, 130.80, 130.70, 130.56, 130.23, 129.38, 127.97, 126.16, 123.82, 113.70, 37.89, 12.57. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂OSe [M+H]⁺: 407.0657; found: 407.0659

1-ethyl-3-(2-((4-fluorophenyl)selanyl)phenyl)quinoxalin-2(1*H*)-one (3b)

Colour and physical state: Pale yellow solid

Yield: 92% (78 mg)

Melting point: 116-118 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.53 (t, J = 6.9Hz, 2H), 7.40 (d, J = 7.9 Hz, 2H), 7.27 (td, J = 18.3, 17.2, 7.3 Hz, 3H), 6.97 (t, J = 8.4 Hz, 2H), 4.40 (q, J = 7.3 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 164.22, 161.75, 155.08, 154.17, 137.46, 137.38, 136.68, 135.93, 132.64, 132.46, 130.86, 130.53, 130.28, 127.10, 127.06, 126.12, 123.86, 116.73, 116.52, 113.73, 37.91, 12.57. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -113.39. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₇FN₂OSe [M+H]⁺: 425.0563; found: 425.0565.

3-(2-((4-bromophenyl)selanyl)phenyl)-1-ethylquinoxalin-2(1*H*)-one (3c)

Colour and physical state: Yellow solid **Yield:** 84% (81 mg) **Melting point:** 156-158 ^oC

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (d, J = 6.4 Hz, 1H), 7.99 (d, J = 6.8 Hz, 1H), 7.65 – 7.56 (m, 1H), 7.40 (d, J = 1.7 Hz, 1H), 7.38 (dd, J = 5.1, 2.2 Hz, 5H), 7.34 (dd, J = 4.3, 2.7 Hz, 1H), 7.33 – 7.31 (m, 1H), 7.27 – 7.22 (m, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform*d*) δ 155.21, 154.18, 137.26, 136.41, 134.96, 133.14, 132.67, 132.63, 132.49, 131.63, 130.91, 130.84, 130.57, 130.38, 126.57, 123.89, 122.37, 113.75, 37.92, 12.58. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₇BrN₂OSe [M+H]⁺: 484.9762; found: 484.9757.

3-(2-((4-chlorophenyl)selanyl)phenyl)-1-ethylquinoxalin-2(1H)-one (3d)

Colour and physical state: Yellow solid

Yield:77% (68 mg)

Melting point: 138-140 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 (dd, J = 8.1, 1.6 Hz, 1H), 7.99 (dd, J = 8.3, 1.6 Hz, 1H), 7.61 (td, J = 7.7, 1.6 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.42 – 7.37 (m, 2H), 7.33 (dd, J = 7.8, 6.5 Hz, 2H), 7.26 – 7.22 (m, 2H), 7.21 (d, J = 2.0 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 1.44 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 155.14, 154.16, 137.11, 136.25, 135.18, 134.23, 132.99, 132.62, 130.90, 130.85, 130.55, 130.36, 129.57, 126.47, 123.89, 113.74, 37.92, 12.58. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₇ClN₂OSe [M+H]⁺: 441.0267; found: 441.0268.

1-ethyl-3-(2-(p-tolylselanyl)phenyl)quinoxalin-2(1H)-one (3e)

Colour and physical state: Yellow solid

Yield: 81% (68 mg)

Melting point: 150-152 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.13 – 8.07 (m, 1H), 8.02 (dd, J = 8.3, 1.6 Hz, 1H), 7.64 – 7.55 (m, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.42 – 7.35 (m, 2H), 7.33 – 7.25 (m, 2H), 7.23 – 7.16 (m, 1H), 7.09 (d, J = 7.5 Hz, 2H), 4.40 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 155.19, 154.12, 138.15, 136.49, 136.28, 135.51, 132.63, 132.57, 132.40, 130.75, 130.70, 130.52, 130.25, 130.14, 128.44, 125.80, 123.78, 113.67, 37.86, 21.35, 12.55. **HRMS** (ESI+) m/z: calculated for $C_{23}H_{20}N_2OSe$ [M+H]⁺: 421.0814; found: 421.0838.

1-ethyl-3-(2-(m-tolylselanyl)phenyl)quinoxalin-2(1H)-one (3f)

Colour and physical state: Yellow solid

Yield: 80% (67 mg)

Melting point: 102-104 °C

¹**H NMR** (400 MHz, Chloroform-*d*) 1H NMR (400 MHz, Chloroform-d) δ 8.07 (dd, J = 7.7, 1.6 Hz, 1H), 8.01 (dd, J = 8.3, 1.5 Hz, 1H), 7.65 – 7.56 (m, 1H), 7.41 – 7.35 (m, 4H), 7.35 – 7.33 (m, 1H), 7.33 – 7.28 (m, 1H), 7.24 – 7.19 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.12 – 7.06 (m, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.28 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, *Chloroform-d*) δ 155.36, 154.16, 139.16, 136.87, 135.74, 135.71, 132.92, 132.69, 132.61, 132.17, 132.04, 130.76, 130.68, 130.58, 130.17, 129.18, 128.84, 126.06, 123.79, 113.68, 37.87, 21.35,

12.57. **HRMS** (ESI+) m/z: calculated for $C_{23}H_{20}N_2OSe [M+H]^+$: 421.0814; found: 421.0821.

1-ethyl-3-(2-(o-tolylselanyl)phenyl)quinoxalin-2(1H)-one (3g)

Colour and physical state: Yellow solid Yield: 85% (71 mg) Melting point: 97-99 °C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 (dd, 1H), 8.03 (dd, J = 8.1, 1.6 Hz, 1H), 7.64 – 7.54 (m, 2H), 7.44 – 7.35 (m, 2H), 7.34 – 7.28 (m, 1H), 7.24 – 7.18 (m, 4H), 7.12 – 7.05 (m, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.31 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 155.25, 154.11, 141.63, 136.87, 136.47, 135.07, 132.73, 132.67, 132.58, 132.18, 130.85, 130.73, 130.54, 130.30, 130.21, 128.64, 126.76, 126.01, 123.75, 113.66, 37.84, 22.79, 12.55. **HRMS** (ESI+) m/z: calculated for C₂₃H₂₀N₂OSe [M+H]⁺: 421.0814; found: 421.0820.

1-ethyl-3-(2-(p-tolylselanyl)phenyl)quinoxalin-2(1H)-one (3h)

Colour and physical state: Yellow solid

Yield: 77% (67 mg) Melting point: 118-120 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (dd, J = 7.7, 1.5 Hz, 1H), 8.02 (dd, J = 8.4, 1.5 Hz, 1H), 7.65 – 7.56 (m, 1H), 7.55 – 7.48 (m, 2H), 7.48 – 7.35 (m, 2H), 7.26 (s, 2H), 7.22 – 7.16 (m, 1H), 4.41 (q, J = 7.2 Hz, 2H), 3.81 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.00, 155.04, 154.15, 137.65, 137.08, 135.97, 132.62, 131.81, 130.79, 130.54, 130.15, 125.54, 123.84, 122.21, 115.15, 113.71, 55.39, 37.91, 12.59. HRMS (ESI+) m/z: calculated for C₂₃H₂₀N₂O₂Se [M+H]⁺ : 437.0763; found: 437.0786.

1-ethyl-3-(4-methoxy-2-(phenylselanyl)phenyl)quinoxalin-2(1H)-one (3i)

Colour and physical state: Yellow solid **Yield:** 83% (72 mg) **Melting point:** 113-115 ⁰C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.29 (d, *J* = 8.7 Hz, 1H), 8.02 (dd, *J* = 8.2, 1.6 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.57 (ddd, *J* = 8.7, 7.2, 1.5 Hz, 1H), 7.41 – 7.34 (m, 2H), 7.34 – 7.28 (m, 3H), 6.81 (dd, *J* = 8.7, 2.6 Hz, 1H), 6.78 (d, *J* = 2.6 Hz, 1H), 4.40 (q,

6.81 (dd, J = 8.7, 2.6 Hz, 1H), 6.78 (d, J = 2.6 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 3.64 (s, 3H), 1.44 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.77, 154.31, 153.90, 138.77, 135.89, 132.60, 132.36, 132.32, 132.30, 130.32, 130.13, 129.50, 128.89, 128.38, 123.79, 117.54, 113.65, 111.41, 55.31, 37.88, 12.58. HRMS (ESI+) m/z: calculated for C₂₃H₂₀N₂O₂Se [M+H]⁺ : 437.0763; found: 437.0761.

3-(4-chloro-2-(phenylselanyl)phenyl)-1-ethylquinoxalin-2(1H)-one (3j)

Colour and physical state: Yellow solid Yield: 74% (74 mg) Melting point: 118-120 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 8.4 Hz, 1H), 8.02 (dd, J = 8.2, 1.6 Hz, 1H), 7.65 – 7.56 (m, 3H), 7.42 – 7.37 (m, 2H), 7.37 – 7.31 (m, 3H), 7.26 (d, J = 2.9 Hz, 1H), 7.25 – 7.19 (m, 1H), 4.41 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 154.05, 153.75, 138.54, 136.30, 135.66, 134.47, 132.56, 131.93, 131.69, 131.54, 131.06, 130.49, 129.73, 128.69, 125.93, 124.00, 113.78, 37.99, 12.59. HRMS (ESI+) m/z: calculated for C₂₂H₁₇ClN₂OSe [M+H]⁺: 441.0267; found: 441.0255.

3-(4-chloro-2-(phenylselanyl)phenyl)-1-methylquinoxalin-2(1*H*)-one (3k)

Colour and physical state: Pale yellow solid **Yield:** 61% (61 mg)

Melting point: 127-129 ^oC

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 8.4 Hz, 1H), 8.00 (dd, J = 8.0, 1.5 Hz, 1H), 7.62 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.58 (dd, J = 7.7, 1.8 Hz, 2H), 7.43 – 7.35 (m, 1H), 7.33 (d, J = 7.8 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.22 (d, J = 2.1 Hz, 1H), 3.79 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 154.56, 153.86, 138.41, 136.32, 135.66, 134.55, 133.62, 132.20, 131.87, 131.71, 131.45, 131.09, 130.24, 129.73, 128.69, 125.98, 124.19, 113.96, 29.66. **HRMS** (ESI+) m/z: calculated for $C_{21}H_{15}CIN_2OSe [M+H]^+$: 427.0111; found: 427.0095.

1-methyl-3-(2-(phenylselanyl)phenyl)quinoxalin-2(1H)-one (3l)

Colour and physical state: Pale yellow solid Yield: 92% (76 mg) Melting point: 133-135 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (dd, J = 7.7, 1.6 Hz, 1H), 7.99 (dd, J = 8.0, 1.5 Hz, 1H), 7.60 (ddd, J = 8.6, 7.3, 1.5Hz, 1H), 7.56 – 7.50 (m, 2H), 7.43 – 7.34 (m, 3H), 7.34 – 7.29 (m, 1H), 7.28 – 7.19 (m, 4H), 3.78 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.52, 154.72, 137.19, 135.39, 135.00, 133.74, 133.06, 132.46, 132.39, 130.83, 130.66, 130.37, 130.23, 129.39, 127.95, 126.25, 124.00, 113.87, 29.59. HRMS (ESI+) m/z: calculated for C₂₁H₁₆N₂OSe [M+H]⁺: 393.0501; found: 393.0504.

1-methyl-3-(4-methyl-2-(phenylselanyl)phenyl)quinoxalin-2(1*H*)-one (3m)

Colour and physical state: Yellow solid

Yield: 87% (70 mg)

Melting point: 149-151 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 – 7.92 (m, 2H), 7.59 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.54 – 7.50 (m, 2H), 7.41 – 7.32 (m, 2H), 7.30 – 7.21 (m, 3H), 7.17 (d, J = 1.7 Hz, 1H), 7.13 (dd, J = 8.3, 2.1 Hz, 1H), 3.77 (s, 3H), 2.24 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 155.42, 154.78, 140.50, 135.08, 134.79, 134.49, 133.60, 132.56, 132.44, 130.61, 130.50, 130.22, 129.32, 127.81, 127.26, 123.94, 113.82, 29.58, 21.47. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂OSe [M+H]⁺: 407.0657; found: 407.0664.

3-(2-(phenylselanyl)phenyl)quinoxalin-2(1*H*)-one (3n)

Colour and physical state: Pale yellow solid Yield: 63% (53 mg) Melting point: 246-248 0 C ¹H NMR (400 MHz, DMSO- d_{6}) : δ 12.69 (s, 1H), 8.03 (d, J =9.2 Hz, 1H), 7.84 (d, J = 6.7 Hz, 1H), 7.59 (t, J = 7.0 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.40 – 7.37 (m, 1H), 7.37 – 7.33 (m, 5H), 7.32 – 7.30 (m, 1H). ¹³C NMR (100 MHz, DMSO- D_{6}) δ 156.09, 154 43 136 90 134 29 134 14 132 25 131 71 131 25 130 81

154.43, 136.90, 134.29, 134.14, 132.25, 131.71, 131.25, 130.81, 130.67, 130.17, 129.64, 129.19, 128.49, 128.12, 126.17, 123.65, 115.41. **HRMS** (ESI+) m/z: calculated for $C_{20}H_{14}N_2OSe$ [M+H]⁺: 379.0344; found: 379.0345.

3-(2-((4-methoxyphenyl)thio)phenyl)-1-methylquinoxalin-2(1*H*)-one (5a)

Colour and physical state: Pale yellow solid **Yield:** 78% (62 mg) **Melting point:** 148-150 ⁰C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 6.5 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.42 – 7.31 (m, 4H), 7.30 – 7.24 (m, 2H), 7.23 – 7.13 (m, 1H), 6.78 (d, *J* = 8.7 Hz, 2H), 3.76 (s, 3H), 3.76

7.23 – 7.13 (m, 1H), 6.78 (d, J = 8.7 Hz, 2H), 3.76 (s, 3H), 3.76 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.67, 156.69, 154.61, 138.92, 136.38, 135.32, 133.80, 132.79, 130.80, 130.67, 130.53, 129.95, 126.03, 125.88, 123.88, 114.84, 113.81, 55.39, 29.51. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂O₂S [M+H]⁺: 375.1162; found: 375.1162.

1-methyl-3-(2-(p-tolylthio)phenyl)quinoxalin-2(1*H*)-one (5b)

Colour and physical state: Pale yellow solid **Yield:** 76% (58 mg) **Melting point:** 107-109 ^oC ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (d, J = 8.0 Hz, 1H), 7.61 (dt, J = 12.6, 6.1 Hz, 2H), 7.37 (q, J = 8.0 Hz, 2H), 7.30 (d, J = 7.5 Hz, 3H), 7.25 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 7.7 Hz, 2H), 3.76 (s, 3H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 156.80, 154.66, 137.78, 137.58, 137.32, 133.79, 132.80, 132.67, 132.38, 131.75, 130.81, 130.54, 130.05, 129.96, 126.60, 123.88, 113.82, 29.55, 21.23. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂OS [M+Na]⁺:381.1032; found: 381.1004

3-(2-((4-fluorophenyl)thio)phenyl)-1-methylquinoxalin-2(1*H*)-one (5c)

Colour and physical state: Yellow solid

Yield: 68 % (52 mg)

Melting point: 131-133 ^oC

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 7.9, 1.2 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.42 – 7.36 (m, 2H), 7.36 – 7.31 (m, 4H), 7.30 (d, J = 6.2 Hz, 1H), 6.92 (t, J = 8.7 Hz, 2H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 163.64, 156.68, 154.67, 137.63, 137.24, 134.46, 134.38, 133.81, 132.80, 132.03, 130.93, 130.57, 130.18, 130.11, 127.01, 123.98, 116.39, 116.17, 113.88, 29.58. ¹⁹F **NMR** (376 MHz, Chloroform-*d*) δ -114.18. **HRMS** (ESI+) m/z: calculated for C₂₁H₁₅FN₂OS [M+Na]⁺: 385.0781; found: 385.0785

3-(2-((4-chlorophenyl)thio)phenyl)-1-methylquinoxalin-2(1*H*)-one (5d)

Colour and physical state: Brown solid **Yield:** 67% (54 mg)

Melting point: 152-154 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (dd, J = 8.0, 1.5 Hz, 1H), 7.69 – 7.56 (m, 2H), 7.41 – 7.38 (m, 1H), 7.38 – 7.35 (m, 3H), 7.34 (d, J = 1.3 Hz, 1H), 7.23 – 7.19 (m, 2H), 7.17 – 7.13 (m, 2H), 3.75 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 156.67, 154.66, 138.44, 136.01, 135.45, 133.78, 133.10, 132.98, 132.81, 132.73, 130.96, 130.57, 130.28, 130.23, 129.19, 127.61, 124.00, 113.88, 29.59. **HRMS** (ESI+) m/z: calculated for $C_{21}H_{15}CIN_2OS [M+H]^+$: 379.0666; found: 379.0673.

3-(4-chloro-2-(phenylthio)phenyl)-1-methylquinoxalin-2(1*H*)-one (5e)

Colour and physical state: Brown solid **Yield:** 51% (36 mg) **Melting point:** 105-107 0 C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.93 (dd, J = 8.0, 1.6 Hz, 1H), 7.61 (t, J = 8.1 Hz, 2H), 7.39 – 7.33 (m, 4H), 7.28 (d, J = 2.0 Hz, 1H), 7.26 (d, J = 3.6 Hz, 1H), 7.25 (d, J = 3.0 Hz, 2H), 7.22 (d, J = 2.1 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.94, 154.56, 140.13, 136.17, 135.44, 134.66, 133.81, 132.85, 131.35, 131.12, 130.62, 129.47, 128.50, 128.08, 126.77, 124.05, 113.91, 29.62. **HRMS** (ESI+) m/z: calculated for $C_{21}H_{15}CIN_2OS \ [M+H]^+$: 379.0666; found: 379.0653.

1-methyl-3-(4-methyl-2-(phenylthio)phenyl)quinoxalin-2(1*H*)-one (5f)

Colour and physical state: Pale yellow solid **Yield:** 68% (49 mg) **Melting point:** 120-122 ⁰C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.90 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.38 – 7.31 (m, 2H), 7.30 – 7.27 (m, 2H), 7.22 – 7.14 (m, 5H), 3.73 (s, 3H), 2.30 (s, 3H). ¹³C **NMR** (100 MHz, Chloroform-*d*) δ 156.90, 154.80, 140.35, 136.99, 136.01, 135.68, 133.79, 133.49, 132.86, 131.34, 130.63, 130.50, 129.97, 129.01, 128.27, 126.89, 123.78, 113.77, 29.53, 21.42.

1-methyl-3-(4-methyl-2-(p-tolylthio)phenyl)quinoxalin-2(1H)-one (5g)

359.1213; found: 359.1217.

Colour and physical state: Pale yellow semi-solid

Yield: 62% (46 mg)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 – 7.55 (m, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.41 – 7.30 (m, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 7.8 Hz, 2H), 3.73 (s, 3H), 2.28 (s, 3H), 2.27 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 156.93, 154.77, 140.21, 137.25, 137.10, 134.95, 133.80, 132.88, 132.82, 132.60, 132.24, 130.60, 130.50, 129.91, 129.87, 127.74, 123.77, 113.74, 29.52, 21.44, 21.22. **HRMS** (ESI+) m/z: calculated for C₂₃H₂₀N₂OS [M+H]⁺: 373.1369; found: 373.1374.

HRMS (ESI+) m/z: calculated for $C_{22}H_{18}N_2OS$ [M+H]⁺:

6,7-dichloro-1-methyl-3-(2-(phenylthio)phenyl)quinoxalin-2(1H)-one (5h)

Colour and physical state: White solid **Yield:** 54% (37 mg)

Melting point: 141-143 ^oC

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.68 – 7.55 (m, 1H), 7.43 (s, 1H), 7.36 (d, J = 3.4 Hz, 3H), 7.32 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 3.69 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 157.96, 154.12, 137.44, 136.77, 136.37, 134.93, 133.17, 132.84, 131.82, 131.70, 131.24, 130.52, 130.03, 129.18, 127.69, 127.31, 127.18, 115.34, 29.83. **HRMS** (ESI+) m/z: calculated for C₂₁H₁₄Cl₂N₂OS [M+H]⁺: 413.0277; found: 413.0272.

6,7-dichloro-3-(2-((4-chlorophenyl)thio)phenyl)-1-methylquinoxalin-2(1H)-one (5i)

Colour and physical state: White solid **Yield:** 66% (48 mg) Melting point: 119-121 °C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.65 – 7.59 (m, 1H), 7.44 (s, 1H), 7.37 (q, J = 3.2 Hz, 3H), 7.24 – 7.14 (m, 4H), 3.69 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 157.83, 154.08, 137.73, 136.17, 135.21, 135.09, 133.33, 133.16, 133.03, 132.74, 131.81, 131.25, 130.64, 130.18, 129.31, 127.81, 127.57, 115.38, 29.83. HRMS (ESI+) m/z: calculated for C₂₁H₁₃Cl₃N₂OS [M+H]⁺: 446.9887; found: 446.9872.

1-ethyl-3-(2-(phenylthio)phenyl)quinoxalin-2(1H)-one (5j)

Colour and physical state: White solid **Yield:** 84% (60 mg) **Melting point:** 145-147 0 C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 8.4, 1.4 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.59 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.38 (d, J = 2.2 Hz, 1H), 7.36 (d, J = 1.4 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.31 (d, J = 1.4 Hz, 1H), 7.23 – 7.14 (m, 3H), 4.36 (q, J =7.2 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 156.78, 154.17, 138.11, 136.78, 136.69, 133.11, 132.75, 132.70, 131.72, 130.82, 130.76, 130.12, 129.09, 127.14, 123.65, 113.64, 37.76, 12.55. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂OS [M+H]⁺: 359.1213; found: 359.1210.

1-ethyl-3-(2-(p-tolylthio)phenyl)quinoxalin-2(1*H*)-one (5k)

Colour and physical state: Pale yellow solid

Yield: 77% (57 mg)

Melting point: 99-101 ^oC

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.95 (dd, J = 8.2, 1.6 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.59 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.37 (d, J = 8.0 Hz, 2H), 7.35 – 7.31 (m, 1H), 7.30 – 7.28 (m, 2H), 7.26 (d, J = 2.0 Hz, 1H), 7.24 (s, 1H), 7.03 (d, J = 7.8 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 156.75, 154.13, 137.88, 137.54, 137.33, 133.11, 132.75, 132.64, 132.54, 131.79, 130.81, 130.72, 130.06, 130.00, 129.95, 126.56, 123.62, 113.62, 37.75, 21.22, 12.54. **HRMS** (ESI+) m/z: calculated for C₂₃H₂₀N₂OS [M+H]⁺: 373.1369; found: 373.1343.

3-(2-((4-chlorophenyl)thio)phenyl)-1-ethylquinoxalin-2(1*H*)-one (5l)

Colour and physical state: White solid Yield: 75% (59 mg) Melting point: 108-110 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 (dd, J = 8.4, 1.6 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.63 – 7.56 (m, 1H), 7.42 – 7.34 (m, 5H), 7.24 – 7.20 (m, 2H), 7.18 – 7.12 (m, 2H), 4.35 (q, J = 7.2

Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.63, 154.12, 138.41, 136.10, 135.55, 133.09, 132.97, 132.71, 130.86, 130.81, 130.29, 130.24, 129.19, 127.57, 123.72, 113.66, 37.78, 12.54. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₇ClN₂OS [M+H]⁺: 393.0823; found: 393.0826.

1-ethyl-3-(2-((4-nitrophenyl)thio)phenyl)quinoxalin-2(1H)-one (5m)

Colour and physical state: Pale yellow solid Yield: 72% (58 mg) Melting point: 245-247 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.95 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.62 – 7.54 (m, 3H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.28 (m, 2H), 7.21 (d, *J* = 8.9 Hz, 2H), 4.33 (q, *J* = 7.3 Hz, 2H), 1.37 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.46, 154.11, 148.50, 145.50, 141.04, 135.65, 133.05, 132.71, 131.54, 131.08, 130.81, 130.74, 129.80, 127.91, 123.88, 123.82, 113.73, 37.77, 12.50. HRMS (ESI+) m/z: calculated for C₂₂H₁₇N₃O₃S [M+H]⁺: 404.1063; found: 404.1065.

3-(2-(cyclohexylthio)phenyl)-1-ethylquinoxalin-2(1*H*)-one (5n)

Colour and physical state: White solid

Yield: 62% (45 mg)

Melting point: 96-98 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 8.0, 1.6 Hz, 1H), 7.63 – 7.55 (m, 2H), 7.50 (dd, J = 7.2, 2.0 Hz, 1H), 7.43 – 7.31 (m, 4H), 4.38 (q, J = 7.2 Hz, 2H), 3.09 – 3.01 (m, 1H), 1.91 – 1.83 (m, 2H), 1.68 – 1.64 (m, 2H), 1.57 – 1.49 (m, 1H), 1.41 (t, J = 7.2 Hz, 3H), 1.31 – 1.11 (m, 5H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 158.31, 154.25, 140.27, 135.07, 133.31, 133.20, 132.84, 130.75, 130.51, 129.58, 129.42, 127.25, 123.48, 113.64, 47.95, 37.59, 33.41, 26.12, 25.80, 12.50. **HRMS** (ESI+) m/z: calculated for C₂₂H₂₄N₂OS [M+H]⁺: 365.1682; found: 365.1682.

3-(2-(benzylthio)phenyl)-1-methylquinoxalin-2(1*H*)-one (50)

Colour and physical state: Brown solid

Yield: 51% (39 mg)

Melting point: 104-106 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.92 (dd, J = 8.4, 1.5 Hz, 1H), 7.60 (td, J = 7.8, 1.6 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.46 – 7.39 (m, 1H), 7.39 – 7.32 (m, 4H), 7.24 – 7.16 (m, 4H), 6.82 – 6.72 (m, 1H), 4.06 (s, 2H), 3.77 (s, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 154.81, 138.93, 137.42, 136.05, 133.88, 132.87, 132.07, 130.77, 130.60, 129.87, 129.59, 129.23, 128.49, 127.22, 127.16, 123.87, 113.90, 40.60, 29.56. **HRMS** (ESI+) m/z: calculated for C₂₂H₁₈N₂OS [M+H]⁺: 359.1213; found: 359.1219.

3-(2-(phenylthio)phenyl)quinoxalin-2(1*H*)-one (5p)

Colour and physical state: Pale yellow solid **Yield:** 64% (48 mg) **Melting point:** 228-230 °C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 12.26 (s, 1H), 7.96 – 7.88 (m, 1H), 7.72 – 7.65 (m, 1H), 7.55 – 7.48 (m, 1H), 7.44 – 7.37 (m, 4H), 7.36 – 7.32 (m, 1H), 7.31 – 7.28 (m, 2H), 7.21 – 7.11

(m, 1H), 7.72 - 7.65 (m, 1H), 7.55 - 7.48 (m, 1H), 7.44 - 7.37 (m, 4H), 7.36 - 7.32 (m, 1H), 7.31 - 7.28 (m, 2H), 7.21 - 7.11 (m, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 157.15, 156.33, 137.72, 136.83, 136.66, 133.08, 133.02, 131.52, 130.96, 130.35, 130.26, 129.58, 129.13, 127.65, 127.40, 127.18, 124.69, 116.11. **HRMS** (ESI+) m/z: calculated for C₂₀H₁₄N₂OS [M+H]⁺: 331.0900; found: 331.0916.

3-(2-((4-chlorophenyl)thio)phenyl)quinoxalin-2(1H)-one (5q)

Colour and physical state: Pale yellow solid Yield: 62% (51 mg) Melting point: 250-252 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 11.16 (s, 1H), 7.91 (td, *J* = 7.8, 1.4 Hz, 1H), 7.73 – 7.67 (m, 1H), 7.57 – 7.49 (m, 1H), 7.46 – 7.38 (m, 2H), 7.38 – 7.32 (m, 1H), 7.28 – 7.25 (m, 4H), 7.24 – 7.20 (m, 1H), 7.18 – 7.13 (m, 1H). ¹³C NMR (100 MHz, DMSO-*D*₆) δ 157.81, 154.44, 139.09, 135.61, 134.08, 133.07, 132.39, 131.83, 131.76, 131.70, 130.82, 130.37, 130.31, 129.26, 128.84, 127.98, 123.54, 115.46. HRMS (ESI+) m/z: calculated for C₂₀H₁₃ClN₂OS [M+Na]⁺: 387.0329; found: 387.0310.

3-(2-(p-tolylthio)phenyl)quinoxalin-2(1*H*)-one (5r)

Colour and physical state: Pale yellow solid **Yield:** 68% (53 mg) **Melting point:** 240-242 ⁰C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 12.18 (s, 1H), 7.93 (d, *J* = 7.8 Hz, 1H), 7.73 – 7.66 (m, 1H), 7.56 – 7.46 (m, 2H), 7.41 – 7.31 (m, 4H), 7.24 (d, 2H), 7.01 (d, *J* = 7.8 Hz, 2H), 2.25 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 157.66, 156.29, 137.90, 137.56, 137.12, 136.21, 132.42, 132.16, 131.67, 130.84, 130.16, 129.99, 129.65, 128.36, 126.88, 124.49, 116.01, 21.20. **HRMS** (ESI+) m/z: calculated for C₂₁H₁₆N₂OS [M+Na]⁺: 367.0876; found: 367.0851

N-(4-chlorophenyl)-2-(2-oxo-3-(2-(phenylselanyl)phenyl)quinoxalin-1(2H)-yl)acetamide (Compound 7)

Colour and physical state: White solid

Yield: 52% (36 mg)

Melting point: 205-207 °C

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.50 – 7.43 (m, 4H), 7.39 (t, J = 8.2 Hz, 3H), 7.30 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 6.8 Hz, 2H), 7.22 – 7.18 (m, 2H), 5.07 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 164.88, 155.47, 155.40, 137.31, 135.98, 134.60, 134.22, 133.89, 133.02, 132.64, 132.18, 131.67, 130.68, 130.56, 130.36, 129.80, 129.49, 129.10, 127.98, 127.03, 125.20, 121.39, 114.82, 49.22. HRMS (ESI+) m/z: calculated for C₂₈H₂₀ClN₃O₂Se [M+H]⁺: 546.0482; found: 546.0490.

1-(2-oxo-2-phenylethyl)-3-(2-(phenylthio)phenyl)quinoxalin-2(1H)-one (Compound 10)

Colour and physical state: White solid Yield: 58% (38 mg) Melting point: 183-185 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 7.7 Hz, 2H), 7.95 (d, J = 8.0 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.58 – 7.52 (m, 2H), 7.49 (t, J = 7.6 Hz, 1H), 7.39 – 7.31 (m, 6H), 7.25 – 7.15 (m, 3H), 7.01 (d, J = 8.4 Hz, 1H), 5.77 (s, 2H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 191.54, 156.51, 154.47, 138.04, 136.81, 136.71, 134.78, 134.42, 133.30, 133.04, 132.76, 131.85, 130.88, 130.27, 130.24, 129.19, 129.13, 128.39, 127.22, 127.19, 124.05, 113.79, 48.93. **HRMS** (ESI+) m/z: calculated for C₂₈H₂₀N₂O₂S [M+H]⁺: 449.1318; found: 449.1314. ethyl 2-(2-oxo-3-(2-(phenylselanyl)phenyl)quinoxalin-1(2H)-yl)acetate (Compound 11)

Colour and physical state: White solid Yield: 91% (68 mg) Melting point: 175-177 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 6.1 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.60 – 7.51 (m, 3H), 7.43 – 7.35 (m, 1H), 7.35 – 7.29 (m, 2H), 7.28 – 7.18 (m, 4H), 7.13 (d, J = 7.3Hz, 1H), 5.08 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.1Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.25, 154.97, 154.26, 136.54, 135.76, 135.15, 132.87, 132.79, 132.42, 132.30, 130.95, 130.79, 130.58, 130.34, 129.40, 128.03, 126.11, 124.31, 113.32, 62.23, 44.07, 14.26. HRMS (ESI+) m/z: calculated for C₂₄H₂₀N₂O₃Se [M+H]⁺: 465.0712; found: 465.0715.

ethyl 2-(2-oxo-3-(2-(phenylthio)phenyl)quinoxalin-1(2H)-yl)acetate (Compound 12)

Colour and physical state: White solid Yield: 88% (59 mg) Melting point: 168-170 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 8.0, 1.5 Hz, 1H), 7.73 – 7.64 (m, 1H), 7.56 (t, J = 7.1 Hz, 1H), 7.41 – 7.29 (m, 6H), 7.23 – 7.15 (m, 3H), 7.12 (d, J = 8.4 Hz, 1H), 5.06 (s, 2H), 4.25 (q, J = 7.2 Hz, 2H), 1.25 (t, 3H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 167.23, 156.57, 154.28, 137.82, 136.85, 136.61, 132.97, 132.89, 132.73, 131.82, 130.95, 130.89, 130.26, 130.19, 129.11, 127.19, 127.16, 124.16, 113.29, 62.20, 43.99, 14.24. **HRMS** (ESI+) m/z: calculated for C₂₄H₂₀N₂O₃S [M+H]⁺: 417.1267; found: 417.1266.

2-(2-(phenylselanyl)phenyl)quinoxaline (Compound 14)

Colour and physical state: Pale yellow

Yield: 47% (41 mg)

Melting point: 174-176 °C

¹**H NMR** (400 MHz, Chloroform-d) δ 9.26 (s, 1H), 8.22 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 9.8 Hz, 1H), 7.84 (d, J = 9.1 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.56 (dd, J = 7.6, 1.9 Hz, 2H), 7.42 – 7.36 (m, 1H), 7.36 – 7.33 (m, 1H), 7.31 (d, J = 1.9 Hz, 2H), 7.30 – 7.27 (m, 1H), 7.27 – 7.24 (m, 1H). ¹³**C NMR** (100 MHz, Chloroform-*d*) δ 153.23, 144.92, 141.20, 141.12, 137.20, 135.71, 135.61, 132.74, 131.37, 130.51, 130.13, 130.04, 129.82, 129.61, 129.37, 129.32, 128.40, 126.71. **HRMS** (ESI+) m/z: calculated for C₂₀H₁₄N₂Se [M+H]⁺: 363.0395; found: 363.0383.

1-ethyl-3-phenylquinoxalin-2(1*H*)-one (1a)

Colour and physical state: White solid

Yield: 86 %

Melting point: 180-182 °C

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.32 (dd, J = 6.7, 2.9 Hz, 2H), 7.96 (dd, J = 8.2, 1.6 Hz, 1H), 7.56 (ddd, J = 8.7, 7.2, 1.6 Hz, 1H), 7.50 – 7.46 (m, 3H), 7.36 (dd, J = 8.2, 5.8 Hz, 2H), 4.39 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 154.33, 154.30, 136.19, 133.56, 132.44, 130.87, 130.41, 129.71, 128.19, 123.66, 113.54, 37.71, 12.53. HRMS (ESI+) m/z: calculated for C₁₆H₁₄N₂O [M+H]⁺: 251.1179; found: 251.1161.

1-ethyl-3-(phenyl-2,6-d₂)quinoxalin-2(1H)-one (1a [D₂])

Colour and physical state: White solid

Yield: 86 % (43 mg) **Melting point:** 95-97 ⁰C ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.3 Hz, 1H), 7.61 – 7.52 (m, 1H), 7.49 (s, 3H), 7.44 – 7.33 (m, 2H), 4.40 (q, J

= 7.2 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 154.32, 154.24, 135.99, 133.54, 132.42, 130.85, 130.42, 128.08, 123.66, 113.54, 37.71, 12.53. **HRMS** (ESI+) m/z: calculated for C₁₆H₁₂D₂N₂O [M+H]⁺: 253.1304; found: 253.1304.

1-ethyl-3-(2-(phenylselanyl)phenyl-6-d)quinoxalin-2(1H)-one (3a [D₁])

Colour and physical state: White solid Yield: 85% (69 mg) Melting point: 130-132 0 C ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (dd, J = 8.2, 1.5 Hz, 1H), 7.61 – 7.52 (m, 1H), 7.49 (s, 3H), 7.44 – 7.33 (m, 2H), 4.40 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). HRMS (ESI+) m/z: calculated for C₂₂H₁₇DN₂OSe [M+H]⁺: 408.0720; found: 408.0737.

84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 fi (ppm)

Figure 6: ¹⁹F NMR spectrum of compound **3b** (CDCl₃, 400 MHz)

Figure 10: ¹³C NMR spectrum of compound **3d** (CDCl₃, 100 MHz)

Figure 14: ¹³C NMR spectrum of compound **3f** (CDCl₃, 100 MHz)

Figure 16: ¹³C NMR spectrum of compound **3g** (CDCl₃, 100 MHz)

Figure 18: ¹³C NMR spectrum of compound **3h** (CDCl₃, 100 MHz)

Figure 22: ¹³C NMR spectrum of compound **3j** (CDCl₃, 100 MHz)

Figure 24: ¹³C NMR spectrum of compound **3k** (CDCl3, 100 MHz)

Figure 28: ¹³C NMR spectrum of compound **3m** (CDCl3, 100 MHz)

Figure 30: ¹³C NMR spectrum of compound **3n** (CDCl₃, 100 MHz)

Figure 32: ¹³C NMR spectrum of compound **5a** (CDCl₃, 100 MHz)

Figure 33: HSQC spectrum of compound 5a (CDCl₃, 400 MHz)

S35

S39

Figure 52: ¹³C NMR spectrum of compound **5**j (CDCl₃, 100 MHz)

Figure 62: ¹³C NMR spectrum of compound **50** (CDCl₃, 100 MHz)

Figure 66: ¹³C NMR spectrum of compound **5q** (DMSO, 100 MHz)

Figure 68: ¹³C NMR spectrum of compound **5r** (CDCl₃, 100 MHz)

S57

igure 82: ¹³C NMR spectrum of compound **1a-[D₂]** (CDCl₃, 100 MHz)

5. Investigation of deuterium kinetic isotope effects

5.1 Preparation of deuterium-labelled 1-ethyl-3-phenylquinoxalin-2(1H)-one and calculation of percentage purity (3a [D₂])

The compound deuterium labelled compound $3a-[D_2]$ was prepared using the same procedure as was used for the standard reaction except that the coupling partner diphenyl diselenide was not added and that the reaction was carried out in D₂O instead of water.

The purity of the deuterium labelling of $1a-[D_2]$ (Figure 81) was determined by ¹H NMR spectroscopy viz-a viz the standard ¹H NMR spectrum of 1a (Figure 79)⁶.

Figure 81. ¹H NMR spectrum of 99% D_{ortho} -labelled **1a** [D₂] (400 MHz, CDCl₃)

5.2 H/D exchange experiment in the presence of 2a.

Figure 83. ¹H NMR spectrum of compound **3a** [**D**₁] (CDCl₃, 400 MHz) with 68% deuteration

5.3 Deuterium kinetic isotope studies

Procedure for Intermolecular Competition: In an oven-dried screw-capped 10 mL reaction vial with a stirring bar was charged with a mixture of **1a** (0.0793 mmol, 1.0 equiv.) and/or **1a** [**D**₂] (99% deuterated) (0.0793 mmol, 1.0 equiv.), diphenyl diselenide **2a** (0.1586 mmol, 2 equiv.), silver triflimide (60 mol%), Ag₂CO₃ (0.0793 mmol, 1 equiv.), [Cp*RhCl₂]₂ (5 mol%) and 0.8 mL distilled water as solvent. The reaction vial was closed and kept for stirring in an oil bath by heating at 110 °C (oil bath temperature). After 80 minutes, the reaction was stopped, and the reaction mixture was cooled to ambient temperature. Water was decanted and the reaction mixture was directly charged into the silica gel column and purification was done using n-hexane /ethyl acetate as eluent to afford a mixture of **3a** [**D**₁] and **3a**. (See figures 85 and 84 respectively). The intermolecular $k_{\rm H}/k_{\rm D}$ values were eventually determined by ¹H NMR spectroscopy compared to the standard ¹H NMR spectrum of **3a** (Figure 2).

Procedure for the Parallel reactions: In oven-dried screw-capped 10 mL reaction vials with a stirring bar were charged with a mixture of **1a** (0.0793 mmol, 1.0 equiv.) or **1a** [**D**₂] (99% deuterated) (0.0793 mmol, 1.0 equiv.), diphenyl diselenide **2a** (0.1586 mmol, 2 equiv.), silver triflimide (60 mol%), Ag₂CO₃ (0.0793 mmol, 1 equiv.), [Cp*RhCl₂]₂ (5 mol%) and 0.8 mL distilled water as solvent. The reaction vials were closed and kept for stirring in the same oil bath by heating at 110 °C (oil bath temperature). After 80 minutes, the reactions were stopped and the reaction mixture were cooled to ambient temperature. Water was decanted and the reaction mixtures were mixed together and the resultant reaction mixture was directly charged into the silica gel column and purification was done using n-hexane /ethyl acetate as eluent to afford a mixture of **3a** [**D**₁] and **3a**. (See figures 86). The *k*_H/*k*_D values for the Parallel Reaction was eventually determined by ¹H NMR spectroscopy compared to the standard ¹H NMR spectrum of **3a** (Figure 2).

The $k_{\rm H}/k_{\rm D}$ calculation based on the reaction of 1a and 1a [D₂] with 2a:

Assume the molar fraction of **1a** is X and that of **1a** [**D**₂] is (1 - X)

The pattern between 8.05 and 8.11 ppm was employed to calculate $k_{\rm H}/k_{\rm D}$:

for Intermolecular Competition Reaction

For Parallel Reaction

Figure 2. Standard ¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

Figure 85. ¹H NMR spectrum of **3a** [**D**₁] (400 MHz, CDCl₃)

6. X-ray Structure of 3a, 3c⁷⁻⁹

The single crystals were grown by slow evaporation at room temperature using petroleum: ethyl acetate (2:1, v/v) for compounds **3a** and **3c**. The data for X-ray intensity were collected at room temperature (298 K) on Bruker CCD diffractometer and MoK α radiation having wavelength 0.71073 was used. The structures were solved by SHELXL. All the non-hydrogens were refined by full matrix least square on F2 using SHELXL-2018/3. The ORTEP diagrams were generated using the Mercury. The CCDC numbers are 2214690 and 2215006 respectively for compound 3a and 3c. The supplementary crystallographic data can be obtained via CCDC www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

	-	
Identification code	3a	3b
Emperical Formula	C ₂₂ H ₁₈ N ₂ O Se	C_{22} H ₁₇ F N ₂ O Se
Formula weight	405.34	423.33
Temperature	298 K	298 K
Wavelength	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P 21/n	P-1
Unit cell dimentions	a/Å = 11.2232 (3)	a/Å = 9.8962 (7)
	b/Å = 10.9897 (2)	b/Å = 10.3482 (6)
	c/Å = 15.9803 (4)	c/Å = 21.7111 (10)
	$\alpha/^{\circ} = 90$	$\alpha/^{\circ} = 99.181(5)$
	$\beta^{\circ} = 109.770 (3)$	$\beta^{\circ} = 91.413(5)$
	$\gamma/^{\circ} = 90$	$\gamma/^{\circ} = 114.770$ (7)
volume	1854.83	1982.6
Ζ	4	4
Density (calculated)	1.452	1.418
Absorption coefficient	2.037	1.916
F(000)	824	856
Crystal size	0.210 x 0.190 x 0.180 mm ³	0.210 x 0.190 x 0.180 mm ³
Theta ranges	3.3-29.2	3.14-23.9560
Reflections collected	17099	20772
Independent Reflections	4533	9130 [R(int) = 0.0539]
Index ranges	-14≤ h≤ 14	-13 ≤ h≤ 12
_	$-14 \le k \le 14$	$-13 \le k \le 12$
	-21≤1≤21	$-27 \le 1 \le 27$
Completeness of data	0.905	0.848
Absorption correction	none	none
Refinement method	SHELXL-2018/3	SHELXL-2018/3
	(Sheldrick, 2018)	(Sheldrick, 2018)
Data/restraint/parameters	4533/0/235	9130/0/489
Goodness of fit on F ²	1.083	1.017
Final R indices	R1=0.0335, wR2=0.761	R1=0.0539, wR2=0.0935

Table S3. Crystal data and structure refinement for **3a** and **3b**.

[I>2sigma(I)]		
R indices (all data)	R1=0.0491, wR2=0.0835	R1=0.1233, wR2=0.1266
Absolute structure parameter	235	489
Largest diff. peak and hole	0.519/-0.356	0.530/-0.574
[e Å ⁻³]		

Figure 87. ORTEP diagram of the compound **3a (CCDC 2214690)**.

Figure 88. ORTEP diagram of the compound **3b** (CCDC **2215006**).

References

- Z. Y. Xue, Y. Jiang, Y. X. Z. Peng, W.C. Yuan, X. M. Zhang, *Adv. Synth. Catal.*, 2010, 352, 2132.
- 2. J. L. Núñez-Rico, A. Vidal-Ferran, Org. Lett., 2013, 15, 2066.
- 3. S. Kumar, R. S. K. Lalji, M. Gupta, P. Kumar, R. Kumar, B. K. Singh, Org. Biomol. Chem., 2022, 20, 8944.
- 4. S. A. El-Hawash, N. S. Habib, & M. A. Kassem, Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 2006, **339**, 564.
- D. Bandyopadhyay, S. Mukherjee, RR Rodriguez, BK Banik, *Molecules*. 2010, 15, 4207.
- 6. J.H. Chu, S.T. Chen, M. F. Chiang, & M.J. Wu, Organometallics, 2015, 34, 953.
- 7. L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
- 8. G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3.
- C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Steek, J. *Appl. Crystallogr.* 2006, **39**, 453.