1	ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)			
2	Adsorption of cationic surfactant as a probe of the montmorillonite			
4	surface reactivity in the alginate hydrogel composites			
5				
6	Danielle Silva do Nascimento, Mariana Etcheverry, Angie E. Orduz, Carolina V. Waiman,			
7	Graciela P. Zanini [*]			
8				
9	* Corresponding author. Graciela P. Zanini.			
10	INQUISUR. Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253,			
11	B8000CPB-Bahía Blanca, Argentina.			
12	Tel.: +54 291 4595101; Fax: +54 291 4595160.			
13	E-mail address: gzanini@uns.edu.ar			
14				
15				
16				
17				
18				
19				
20				
20				
21				
22				
23				
24				

25 Table S1. Molecular structures of the contaminants studied

Molecular Structures	BAC (benzalkonium chloride)	
$CI \xrightarrow{+} CH_3$ $N \xrightarrow{+} CH_2(CH_2)_nCH_3$ CH_3	Cationic surfactant Molecular Weight 283.8-423.7g/mol Carbon atoms in Chain: n = 8-18 BAC-12 (n=12); BAC-14 (n=14)	
H_3C-N CI^- CI^- CI^- CI^- CI^-	PQ (Paraquat) Cationic herbicide Molecular Weight: 257.16 g/mol	
CI CI At pH=6	2,4-D (2,4-Dichlorophenoxyacetic acid) Anionic herbicide Molecular weight: 221.04 g/mol pKa: 2.98	
O O C H N O C C H N O C C H N O C C C H N O C C C C C C C C C C C C C	MM (Metsulfuron Methyl) Anionic herbicide Molecular weight: 381.36 g/mol pKa: 3.3	
At pH=6		

29 Figure S1. Digital image of AA (left) and A-MMT (right) beads.

34 Figure S2. BAC-12 adsorbed amount as a function of time ($C_i = 0.225 \text{ mEq L}^{-1}$)

45 Figure S4. Thermal analysis TGA (black lines) and DTG (dotted lines) thermal curves of (a) AA beads;
46 (b) MMT and (c) A-MMT beads.

50 Figure S5. EDS elemental mapping of A-MMT bead

TABLE S2: d- basal spacing (Å) and 2 θ angle (°) as a function of adsorbed amount (mEq g⁻¹) of

57 BAC-12.

Q_{ads}	20	d
mEq g ⁻¹	(°)	Å
0.00	7.08	12.48
0.04	7.08	12.48
	6.19	14.27
0.15	7.08	12.50
	6.21	14.22
0.21	7.08	12.48
	6.20	14.27
	5.23	16.90
0.30	7.08	12.51
	6.14	14.38
	5.12	17.24
0.37	7.08	12.48
	6.25	14.14
	5.20	17.46
0.43	7.08	12.52
	5.07	17.38
0.47	7.08	12.48
	5.02	17.51
0.56	7.08	12.49
	4.95	17.65
0.65	7.08	12.50
	4.98	17.55
0.75	7.08	12.56
	4.93	17.88
0.84	4.95	17.75
0.91	4.89	17.91
1.00	4.95	17.69
1.02	4.93	17.93

Figure S6. Adsorption isotherms on A-MMT composites: (a) BAC-12 (red squares), BAC in presence of 2,4-D (blue diamonds), and BAC in presence of MM (green circles); and (b) 2,4-D (blue circles), MM (green diamonds). Inset 2,4-D in presence of BAC-12 (empty circles) and MM in presence of BAC-12 (empty diamonds) 65

67