Supporting information
 for

A new and straightforward route to synthesize novel pyrazolo[3,4-b]pyridine-5-carboxylate scaffolds from 1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles using sulfonated amorphous carbon

Hai Truong Nguyen, ${ }^{\text {a,b }}$ Phu Hoang Dang, ${ }^{\text {a,b }}$ and Phuong Hoang Tran ${ }^{\text {a,b,* }}$

${ }^{\text {a }}$ Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, 700000, Vietnam.
${ }^{\text {b }}$ Vietnam National University - Ho Chi Minh City, 700000, Vietnam.
*Corresponding author: thphuong@hcmus.edu.vn

Table of content

Section S1. The mechanism proposed for the synthesis of (1b) was S1
detected by HRMS-ESI
Section S2. Spectral data S2-S6
Section S3. ${ }^{1} \mathbf{H},{ }^{13} \mathbf{C}$ NMR, and HRMS spectroscopy

Section S1. The mechanism proposed for the synthesis of (1b) was detected by HRMS-ESI

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 6-amino-3-methyl-1,4-diphenyl-1,4-dihydro-pyrano[2,3-c]pyrazole-5-carbonitrile and ethyl 3-methyl-1,4-diphenyl-4,5,6,7-tetrahydro-1 H -pyrazolo[3,4b]pyridine-5-carboxylate.

Section S2. Spectral data

Ethyl 6-amino-3-methyl-1,4-diphenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5carboxylate (Compound 1b, Scheme 2)

Following the general procedure: 6-Amino-3-methyl-1,4-diphenyl-1,4-dihydropyrano[2,3c] pyrazole-5-carbonitrile ($1,0.25 \mathrm{mmol}, 82.0 \mathrm{mg}$), and aniline ($0.25 \mathrm{mmol}, 23.5 \mathrm{mg}$) in ethanol $(2.0 \mathrm{~mL})$. The white solids were obtained with $84.5 \mathrm{mg}(\mathbf{1 b}, 97 \%) . R_{\mathrm{f}}=0.39$ (n-hexane/ethyl acetate $=8: 2$).
M.p. $=167-169^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-$ $4.06(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.7,144.4,137.1,134.8,129.5,129.3,129.1,128.7,121.1$, 113.1, 111.7, 111.5, 62.0, 56.2, 44.7, 27.4, 14.1, 13.7.

HRMS (ESI+) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$376.1899, found 376.1840.
Ethyl 6-amino-3-methyl-1-phenyl-4-(p-tolyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 2b, Scheme 2)

Following the general procedure: 6-Amino-3-methyl-1-phenyl-4-(p-tolyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile ($2,0.25 \mathrm{mmol}, 85.0 \mathrm{mg}$), and aniline (0.25 mmol , $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The yellow solids were obtained with $64.4 \mathrm{mg}(\mathbf{2 b}, 69 \%) . R_{\mathrm{f}}=$ 0.46 (n-hexane/ethyl acetate $=8: 2$).
M.p. $=159-161^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H})$, $7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.97-3.87(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.8,144.4,139.2,137.3,131.7,129.7,129.5,128.5,121.1$, $113.1,111.8,111.6,61.5,56.3,44.4,27.6,21.1,14.0,13.7$.

HRMS (ESI+) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}[\mathrm{M}]^{+}$390.2056, found 390.1989.
Ethyl 6-amino-3-methyl-4-(4-nitrophenyl)-1-phenyl-4,5,6,7-tetrahydro-1 H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 3b, Scheme 2)

Following the general procedure: 6-Amino-3-methyl-4-(4-nitrophenyl)-1-phenyl-1,4dihydropyrano $[2,3-c]$ pyrazole-5-carbonitrile ($\mathbf{3}, 0.25 \mathrm{mmol}, 93.2 \mathrm{mg}$), and aniline (0.25 mmol , $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The yellow solids were obtained with $71.1 \mathrm{mg}(\mathbf{3 b}, 79 \%) . R_{\mathrm{f}}=$ 0.51 (n-hexane/ethyl acetate $=8: 2$).
M.p. $=163-164{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31$ (m, 3H), 7.08 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J$ $=5.0 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.2,148.5,144.1,141.9,136.1,129.9,129.6,124.2,121.4$, 113.1, 111.2, 111.0, 62.0, 55.7, 44.3, 26.9, 14.3, 13.8 .

HRMS (ESI+) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}{ }^{+}[\mathrm{M}]^{+} 421.1750$, found 421.1683.
Ethyl 6-amino-4-(4-fluorophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1 H -pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 4b, Scheme 2)

Following the general procedure: 6-Amino-4-(4-fluorophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile ($4,0.25 \mathrm{mmol}, 86.5 \mathrm{mg}$), and aniline (0.25 mmol , $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The white solids were obtained with $71.9 \mathrm{mg}(\mathbf{4 b}, 76 \%) . R_{\mathrm{f}}=$ 0.48 (n-hexane/ethyl acetate $=8: 2$) .
M.p. $=166-168^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, $7.13(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.13(\mathrm{dd}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 0.98$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.6,164.2,144.3,136.8,130.5(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.6$, $121.2,116.3,116.1,113.1,111.5(\mathrm{~d}, J=25.5 \mathrm{~Hz}), 61.7,56.2,44.0,27.4,14.1,13.8$
HRMS (ESI-) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~F}^{-}[\mathrm{M}-3 \mathrm{H}]^{-} 391.1571$, found 391.1581
Ethyl 6-amino-4-(4-chlorophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1 H -pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 5b, Scheme 2)

Following the general procedure: 6-Amino-4-(4-chlorophenyl)-3-methyl-1-phenyl-1,4dihydropyrano $[2,3-c]$ pyrazole-5-carbonitrile ($5,0.25 \mathrm{mmol}, 90.5 \mathrm{mg}$), and aniline $(0.25 \mathrm{mmol}$, $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The white solids were obtained with $66.2 \mathrm{mg}(\mathbf{5 b}, 67 \%) . R_{\mathrm{f}}=$ 0.49 (n-hexane/ethyl acetate $=8: 2$) .
M.p. $=167-168^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.5,144.3,136.7,133.8,132.4,132.0,130.3,129.6,129.6$, $129.3,126.9,123.6,121.3,121.2,113.1,111.3,61.8,55.9,44.1,37.0,27.2,14.2,13.8$.

HRMS (ESI-) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2}{ }^{-}[\mathrm{M}-2 \mathrm{H}]^{-} 408.1354$, found 408.1244
Ethyl 6-amino-4-(4-bromophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1 H -pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 6b, Scheme 2)

Following the general procedure: 6-Amino-4-(4-bromophenyl)-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile ($6,0.25 \mathrm{mmol}, 101.5 \mathrm{mg}$), and aniline (0.25 mmol , $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The white solids were obtained with $55.8 \mathrm{mg}(\mathbf{6 b}, 56 \%) . R_{\mathrm{f}}=$ 0.50 (n-hexane/ethyl acetate $=8: 2$).
M.p. $=166-167{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.5,144.3,136.7,133.8,132.4,132.0,130.3,129.6,129.6$, $129.3,126.9,123.6,121.3,121.2,113.1,111.3,61.8,55.9,44.1,37.0,27.2,14.2,13.8,12.9$.

HRMS (ESI+) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Br}^{+}[\mathrm{M}+\mathrm{H}]^{+} 455.1082$, found 455.0896.
Ethyl 6-amino-4-(furan-2-yl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 7b, Scheme 2)

Following the general procedure: 6-Amino-4-(furan-2-yl)-3-methyl-1-phenyl-1,4dihydropyrano $[2,3-c]$ pyrazole-5-carbonitrile ($7,0.25 \mathrm{mmol}, 79.5 \mathrm{mg}$), and aniline (0.25 mmol , $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The white solids were obtained with $52.3 \mathrm{mg}(7 \mathbf{b}, 71 \%) . R_{\mathrm{f}}=$ 0.58 (n-hexane/ethyl acetate $=8: 2$).
M.p. $=173-174{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.48(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.40(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=168.7,148.4,144.3,143.5,136.7,129.5,129.2,121.1,120.1$, $113.1,111.5,111.1,110.8,110.1,61.8,55.0,39.3,26.0,14.3,13.9$.

HRMS (ESI+) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}[\mathrm{M}]^{+} 366.1692$, found 366.1629.
Ethyl 6-amino-3-methyl-4-(5-nitrofuran-2-yl)-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 8b, Scheme 2)

Following the general procedure: 6-Amino-4-(5-nitrofuran-2-yl)-3-methyl-1-phenyl-1,4dihydropyrano $[2,3-c]$ pyrazole-5-carbonitrile $(9,0.25 \mathrm{mmol}, 90.7 \mathrm{mg})$, and aniline $(0.25 \mathrm{mmol}$, $23.5 \mathrm{mg})$ in Ethanol (2.0 mL). The white solids were obtained with $67.3 \mathrm{mg}(\mathbf{9 b}, 68 \%) . R_{\mathrm{f}}=$ 0.56 (n-hexane/ethyl acetate $=8: 2$).
M.p. $=179-180^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.50(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.06$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.9,148.6,144.5,143.7,136.9,129.7,129.3,121.3,120.2$, $113.3,111.6,111.3,111.0,110.3,62.0,55.2,39.5,26.2,14.5,14.1$.

HRMS (ESI+) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+}[\mathrm{M}]^{+} 411.1543$, found 411.1787.

Section S3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{COSY}, \mathrm{HMMBC}, \mathrm{HSQC}$ NMR, and HRMS spectroscopy of ethyl 6-amino-3-methyl-1,4-diphenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 1b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-3-methyl-1-phenyl-4-(p-tolyl)-

4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 2b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-3-methyl-4-(4-nitrophenyl)-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 4b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-4-(4-fluorophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 5b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-4-(4-chlorophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 6b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-4-(4-bromophenyl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 7b)

$$
\text { Spectrum from } 202102003 \text {-BH a wift (sample 5) - } 53 \text {-488r. +TOF MS (30-1000) from } 0.426 \text { min }
$$

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-4-(furan-2-yl)-3-methyl-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 8b)

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and HRMS spectroscopy of Ethyl 6-amino-3-methyl-4-(5-nitrofuran-2-yl)-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carboxylate (Compound 9b)

