Electronic supplementary information (ESI)

Continuous CO₂ capture and methanation over Ni-Ca/Al₂O₃ dual

functional materials

Lingcong Li,¹ Ziyang Wu,¹ Shinta Miyazaki,¹ Takashi Toyao,¹ Zen Maeno,^{*2} Ken-ichi Shimizu^{*1}

¹ Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
² School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-cho, Hachioji, 192-0015, Japan

*Corresponding authors Zen Maeno, E-mail: zmaeno@cc.kogakuin.ac.jp Ken-ichi Shimizu, E-mail: kshimizu@cat.hokudai.ac.jp

Figures

Figure S1. Effluent gas compositions for CCR over Ni(10)–Ca(30)/Al₂O₃ in (a) double reactor and (b) single reactor systems. Conditions: 100 mg of catalyst, 450 °C, 100 mL min⁻¹ of 1% $CO_2/10\% O_2/N_2$ for 30 s, switched to 100 mL min⁻¹ of H₂ for 30 s.

Figure S2. STEM images and EDS mapping of Ni(10)/Al₂O₃.

Figure S3 Effluent gas composition for continuous operated CCR over Ni(10)/Ca₁₂Al₁₄O₃₃. Conditions: 100 mg of catalyst, 450 °C, 100 mL min⁻¹ of 0.5% CO₂/10% O₂/N₂ for 30 s, switched to 100 mL min⁻¹ of H₂ for the other 30 s.

Figure S4 Continuous CCR operation with flowing steam over Ni(10)-Ca(30)/Al₂O₃. Conditions: 100 mg of catalyst for each reactor, 450 °C, 100 mL min⁻¹ of 1% CO₂/10% O₂/N₂ with 20% water vapor for 30 s, switched to 100 mL min⁻¹ of H₂ for the other 30 s.

	Reaction	CO conturo	CO ₂	CH_4	CH ₄ selectivity	
Ni-Ca DFM	Temperature	[µmol g ⁻¹]	conversion	formation	(%)	Ref.
	[°C]		(%)	[µmol g ⁻¹]		
10% Ni-30%	450	340	46	153	97	This work
Ca/Al ₂ O ₃						
1% Ni-CaO	550	9200	38	2000	58	Fuel 2021 , 286,
						119308
10% Ni-CaO	550	8100	45	2500	69	Fuel 2021 , 286,
						119308
						ACS Sustainable
10% Ni-15% Ca-	450	73	82	58	97	Chem.
AI_2O_3						<i>Eng.</i> 2021 , 9,
						3452–3463
5% Ni/15%Ca-	520			223		J. CO ₂ Util. 2019,
Al ₂ O ₃						34, 576-587
10% Ni/15%Ca-	520			225		J. CO ₂ Util. 2019,
Al ₂ O ₃						34, 576-587
15% Ni/20%Ca-	450		66.6		63.2	J. CO ₂ Util. 2019,
AI_2O_3						<i>31</i> , 143-151

Table S1. Comparison of CCR performance among the reported Ni-Ca based DFMs.