Supporting information

Cationic Styryl Dyes for DNA Labelling and Selectivity Toward Cancer Cells and Gram-negative Bacteria

Sirilak Wangngae,^a Uthumpon Ngivprom,^{a,b} Tunyawat Khrootkaew,^a Suphanida Worakaensai,^{a,b} Rung-Yi Lai,^{*,a,b} and Anyanee Kamkaew^{*,a}

^a School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand 30000.

^bCenter for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand 30000.

*anyanee@sut.ac.th; rylai@sut.ac.th

Experimental Section

All glassware was oven-dried prior to use. All reagents were obtained from commercial suppliers (Sigma Aldrich, TCI, and Merck) and used without further purification. Column chromatography was performed with silica gel 60 F254 (Merck, mesh 300-400). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer at room temperature in DMSO with Me₄Si as an internal standard. Chemical shifts of ¹H NMR spectra were recorded and reported in ppm from the solvent resonance (DMSO at 2.54 ppm). Data were reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, br = broad and m = multiplet), coupling constants, and number of protons. Proton decoupled ¹³C NMR spectra were also recorded in ppm from tetramethylsilane (TMS) resonance (DMSO at 40.45 ppm). High-resolution mass spectra (HRMS) were recorded by an electrospray ionization mass (ESI-MS) spectrometer (MicrOTOF, Bruker, Rheinstetten, Germany).

1. ¹H NMR, ¹³C NMR, and MS results of synthesized compounds

1*H*-indole-3-carbaldehyde (2 g, 13.79 mmol) was dissolved in dimethyl sulfoxide (DMSO) (15 mL) with gentle warming. 20% NaOH (2 g NaOH, 2.76 mmol in 10 mL H₂O) was slowly added to the solution at room temperature for 30 min. During this addition, the reaction temperature was maintained below 30 °C. After that, iodoethane (2.15 g, 13.79 mmol) was slowly added into the mixture at room temperature followed by stirring at 35 °C for 5 h. Finally, the mixture was poured into water (60 mL) followed by filtration to obtain a light-brown solid (1.5 g, 63%).^{1, 2}

Step II

(E)-1-ethyl-2-(2-(1-ethyl-1H-indol-3-yl)vinyl)quinolin-1-ium

StyryI-QL (V), was synthesized by the mixture of 1-ethyl-1*H*-indole-3-carbaldehyde (II) (100 mg, 0.58 mmol), 1-ethyl-2-methylquinolin-1-ium (III) (172 mg, 0.58 mmol) and anhydrous sodium acetate (95 mg, 1.16 mmol) in 4 mL EtOH at 80 °C for 3 h. After that, the solvent was removed followed by purification by silica gel column chromatography (5% v/v MeOH/CH₂Cl₂) to yield the pure product as an orange solid (90 mg, 48% yield); mp 244–246 °C. Characterization of **StyryI-QL**: ¹H NMR (500 MHz, DMSO*d*₆) δ 8.77 (d, *J* = 9.0 Hz, 1H), 8.65 (d, *J* = 15.5 Hz, 1H), 8.61 (d, *J* = 9.5 Hz, 1H), 8.48 (s, 1H), 8.41 (d, *J* = 9.0 Hz, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 6.5 Hz, 1H), 8.05 (t, *J* = 8.0 Hz, 1H), 7.81 (t, *J* =

Step I

7.5 Hz, 1H), 7.66 (d, J = 6.5 Hz, 1H), 7.46 (d, J = 15.5 Hz, 1H), 7.33 (s, 2H), 5.01 (d, J = 7.5 Hz, 2H), 4.34 (d, J = 7.0 Hz, 2H), 1.57 (t, J = 7.0 Hz, 3H), 1.44 (t, J = 7.0 Hz, 3H), ¹³C NMR (125 MHz, DMSO*d*₆) δ 156.0, 143.1, 142.3, 138.5, 137.6, 136.2, 134.8, 130.6, 128.4, 127.4, 126.6, 123.9, 122.7, 120.7, 120.4, 118.8, 114.1, 111.9, 110.9, 46.0, 41.9, 15.6, 14.0, HRMS (ESI) calcd for C₂₃H₂₃N₂+ [M+H]+ 327.1856, found 327.1853.

(E)-3-ethyl-2-(2-(1-ethyl-1H-indol-3-yl)vinyl)benzo[d]thiazol-3-ium

StyryI-BT (VI), was synthesized by the mixture of 1-ethyl-1*H*-indole-3-carbaldehyde (II) (100 mg, 0.58 mmol), 3-ethyl-2-methylbenzo[*d*]thiazol-3-ium (IV) (102 mg, 0.58 mmol) and anhydrous sodium acetate (95 mg, 1.16 mmol) in 4 mL EtOH at 80 °C for 3 h. After that, the solvent was removed followed by purification by silica gel column chromatography (5% v/v MeOH/CH₂Cl₂) to yield the pure product as an orange solid (88 mg, 46% yield); mp 236–238 °C. Characterization of **StyryI-BT**: 1H NMR (500 MHz, DMSO-*d*₆) δ 8.53 (s, 1H), 8.40 (d, *J* = 15.5 Hz, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 7.0 Hz, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 15.5 Hz, 1H), 7.36 (quin, *J* = 7.0 Hz, 2H), 4.84 (d, *J* = 8.0 Hz, 2H), 4.33 (q, *J* = 7.5 Hz, 2H), 1.50 – 1.37 (m, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 171.3, 143.9, 140.8, 138.7, 137.5, 129.0, 127.4, 127.0, 125.6, 124.0, 123.9, 122.8, 121.0, 115.7, 113.4, 111.7, 105.0, 43.5, 41.6, 14.9, 13.6, HRMS (ESI) calcd for C₂₁H₂₁N₂S₁⁺ [M+H]⁺ 333.1420, found 333.1429.

Figure S1. Photobleaching studies at 250 W blue light (450 nm) monitored at (**A**) the maximum absorbance and (**B**) emission intensity of styryl dyes in DMSO.

Figure S2. Frontier molecular orbital calculation obtained from DFT/B3-LYP/6-311G calculation in the gas phase and COSMO phase using the dielectric environment of DMSO (47.42).

Figure S3. IC_{50} of styryl dyes in (A, C) normal cells and (B, D) cancer cells, incubated for 24 h.

Name of antibiotic	MIC (µg/mL)			
	E. Coli	S. Aureus		
Amoxicillin	32	1/8		
Ceftiofur	1/8	2		
Kamamycin	2	8		
Colistin Sulfate	1/8	1		
Doxycycline	32	32		
A-tartrate	128	2		
Florfenicol	2	64		
Sulfadimidine	16	8		
Enrofloxacin	16	0.5		
Rifampicin	4	8		
Berberine	512	128		
Lincomycin	512	1		
Styryl-QL	4	4		
Styryl-BT	16	1		

Table S1	MICs	of 12	different	druas	and o	ur stvrv	l dves	in two	bacteria	species.3
	10100		amoroni	arago		ar Styry	i uyoo		buotonia	Spc0ic3.

 Table S2. Comparison of our cationic styryl dyes with the previous styryl systems.

structure	Wavelength of detection	Activity	Selectivity	Therapy	Ref.
N+ N+ OMe	Em= 620 nm	DNA templating	ct-DNA	proposity	Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113378.
OH N CH ₃	Em= 550 nm	DNA staining	dsDNA		Methods and applications in fluorescence, 2015, 3, 044003.
S N+	Em= 599 nm	DNA staining	dsDNA	organelles in stem cells from apical papilla	Molbank 2022, 2022, M1392.
MeO + N N N H OH	Em= 558 nm	DNA staining	dsDNA		Organic & Biomolecular Chemistry, 2013, 11, 7458.
	Em= 629 nm	DNA detection	dsDNA	Chemosensor	Sensors and Actuators B: Chemical, 2014, 202, 483.
	Em= 565 and 547 nm	DNA detection	dsDNA, Cancer Cells and Gram- negative Bacteria (S. <i>aureus</i>)	Yes (anti-cancer and anti- bacteria)	This work
N N N					

Reference

- 1. Q. K. Sun, W. Liu, S. A. Ying, L. L. Wang, S. F. Xue and W. J. Yang, RSC advances, 2015, 5, 73046-73050.
- 2.
- K. Liu, Y. Ding and C. Kang, *Pharmaceutical Chemistry Journal*, 2020, **54**, 345-352. B. Yang, Z. Lei, Y. Zhao, S. Ahmed, C. Wang, S. Zhang, S. Fu, J. Cao and Y. Qiu, *Frontiers in Microbiology*, 2017, **8**. 3.