Supporting Information

CuO Nanorod Arrays by Gas-phase Cation Exchange for Efficient Photoelectrochemical Water Splitting

Zhi Zheng,^{1,2,3} Mikhail Morgan,² Pramathesh Maji,² Xia Xiang,^{1,3} Xiaotao Zu^{1,3} and Weilie Zhou²

¹ Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China.

² Department of Physics and Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148, United States.

³ School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

Author to whom correspondence should be addressed: <u>xtzu@uestc.edu.cn</u> and <u>wzhou@uno.edu</u>

Figure S1. The schematic representation of the experimental setup for the gas-phase cation exchange.

Figure S2. Photography of the ZnO nanorod arrays on ITO glass before (left) and after (right) the cation exchange reaction, showing the color change after the gas-phase cation exchange reaction.

Figure S3. Cross-sectional SEM images of (a) ZnO and (b) CuO nanorod arrays, demonstrating the well preserves of the nanorod structures.

Figure S4. (a) Low-magnification and (b) HRTEM of a typical ZnO nanorod.

Figure S5. The SEM image of the sample under 650 C gas-phase cation exchange, indicates the deterioration of the nanostructures.

Figure S6. The TEM image of nanorod under 300 $^{\circ}$ C gas-phase cation exchange. A clear interface can be observed, revealing the partial cation exchange.

Figure S7. The TEM image of nanorod under (a) 400 and (b) 500 $^\circ\!\! C.$

Table S1. The fitted parameters based on the EIS measurements under different reaction temperatures.

Reaction temperature (°C)	Photocurrent (mA/cm ²)	R_{ct} (Ω)	$R_{s}(\Omega)$
350	1.53	52.51	88.86
400	2.01	14.47	57.41
450	2.1	4.777	47.13
500	0.99	52.78	32.79