Supporting Information

Synthesis of benzo[b]furans from alkynyl sulfoxides and phenols by the interrupted Pummerer reaction

Akihiro Kobayashi,^{a,b} Tsubasa Matsuzawa,^b Takamitsu Hosoya^b and Suguru Yoshida^a*

 ^aDepartment of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585
^bLaboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU),
2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Contents

General Information	S1
Structures of Phenols 1 and Alkynyl Sulfoxides 2	S2
Experimental Procedures	S3
Mechanistic Studies	S7
Computational Methods	S8
Characterization Data of New Compounds	S13
References for Supporting Information	S22
¹ H and ¹³ C NMR Spectra of Compounds	S23

General Information

All reactions were performed with dry glassware under atmosphere of argon, unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel 60 F254, Cat. No. 1.05715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60N, spherical neutral, particle size 40-50 µm, Cat. No. 37562-85 or particle size 63-210 µm, Cat. No. 37565-85). Preparative TLC (PTLC) was performed on silica gel (Wako Pure Chemical Industries Ltd., Wakogel B-5F, Cat. No. 230-00043). Melting points (Mp) were measured on an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ¹H NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 400 MHz. ¹³C NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 101 MHz. ¹⁹F NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 376 MHz. All NMR measurements were carried out at 25 °C. CDCl3 (Kanto Chemical Co. Inc., Cat. No. 07663-23) was used as a solvent for obtaining NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from the solvent peak (\$ 7.26 for ¹H NMR in CDCl₃, \$ 77.0 for ¹³C NMR in CDCl₃) as an internal reference with coupling constants (J) in hertz (Hz). The abbreviations s, d, t, q, and m signify singlet, doublet, triplet, quartet, and multiplet, respectively. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-T100CS "AccuTOF CS" mass spectrometer under positive electrospray ionization (ESI⁺) conditions or JMS-700 (JEOL, Tokyo, Japan) mass spectrometer under electron impact ionization (EI) conditions.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. (2-(prop-2-yn-1-yloxy)ethyl)benzene,^{S1} but-3-yn-1-ylbenzene,^{S2} S-(4-tolyl) 4-methylbenzenesulfonothioate,^{S3} S-(4-tolyl) 4-methylbenzenesulfonothioate,^{S3} (4-bromophenyl) 4-methylbenzenesulfonothioate,^{S3} ethyl (4-tolylethynyl) sulfide,^{S4} ((4-chlorophenyl)ethynyl)(ethyl)sulfane,^{S4} ethyl(4-phenylbut-1-yn-1-yl)sulfane,^{S4} 3-hydroxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate (**1h**),^{S6} and 7-((triisopropylsilyl)oxy)naphthalen-2-ol (**1n**)^{S5} were prepared according to the reported methods.

0 II Me MeO CI Br MeO ОН ЮH ΌΗ ΟН ОН ΟН 1b 1a 1c 1d 1e 1f pinB MeO TfO ОН ОН он Me ОН ОН MeO ОН siMe₃ 1g 1j 1k 11 1h 1i TIPSO ОН ОН ò ОН 1m 1n 10 O Š Et 0 " S 0 o ∥ Et Et p-Tol O *n*-Bu Ph Ph 2b 2d 2c 2a 0 _S Et O Ś Et 0 " S O II S *n*-Bu′ *n*-Bu Me Br Me Cl 2f 2g 2e 2h 0 || || || 0 " S 0 CI Ph Me *n*-Bu *n*-Bu *n*-Bu 2j 2k 2i

Structures of Phenols 1 and Alkynyl Sulfoxides 2

Experimental Procedures

A typical procedure for the synthesis of benzofurans

To a mixture of phenol (1a) (18.8 mg, 0.200 mmol, 2.0 equiv) and 1-(ethylsulfinyl)hex-1-yne (2a) (15.7 mg, 99.4 μ mol) in dichloromethane (1.0 mL) was added trifluoroacetic anhydride (20.9 μ L, 0.150 mmol, 1.5 equiv) at room temperature. After stirring for 1 h at the same temperature, to the mixture was added an aqueous saturated solution of sodium bicarbonate (5 mL) and the mixture was extracted with dichloromethane (15 mL \times 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/ CH₂Cl₂ = 3/1) to give 3-butyl-2-(ethylthio)benzo[*b*]furan (3a) (21.9 mg, 93 μ mol, 94%) as a colorless oil.

According to the procedure for preparing 3-butyl-2-(ethylthio)benzo[b]furan (3a), 2-(ethylthio)-3phenethylbenzo[b]furan (3b), 2-(2-(ethylthio)benzo[b]furan-3-yl)ethyl 4-methylbenzoate (3c), 2-(ethylthio)-3-(phenethoxymethyl)benzo[b]furan (3d), 2-(ethylthio)-3-(4-tolyl)benzo[b]furan (3e), 3-(4-chlorophenyl)-2-3-butyl-2-(4-tolylthio)benzo[b]furan (ethylthio)benzo[b]furan (**3f**), (**3g**), 2-((4-bromophenyl)thio)-3butylbenzo[*b*]furan 3-butyl-2-(ethylthio)-5-methylbenzo[b]furan 3-butyl-2-(ethylthio)-5-(**3h**), (3i),methoxybenzo[b]furan 5-bromo-3-butyl-2-(ethylthio)benzo[b]furan 3-butyl-5-chloro-2-(**3j**), (**3k**), (ethylthio)benzo[b]furan (31), methyl 3-butyl-2-(ethylthio)benzo[b]furan-5-carboxylate (3m), 2-(3-butyl-2-(ethylthio)benzo[b]furan-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3**n), 3-butyl-2-(ethylthio)-7-(trimethylsilyl)benzo[b]furan-6-yl trifluoromethanesulfonate (30), 3-butyl-2-(ethylthio)naphtho[1,2-b]furan (3p),3-butyl-2-(methylthio)benzo[b]furan (**3q**), 2-(benzylthio)-3-butylbenzo[b]furan (3r), 3-butyl-2-((6chlorohexyl)thio)benzo[b]furan (3s), 3-butyl-2-(ethylthio)-6-methylbenzo[b]furan (4a), 3-butyl-2-(ethylthio)-4methylbenzo[b]furan (5a), 3-butyl-2-(ethylthio)-6,7-dihydro-5H-indeno[5,6-b]furan (4b), 1-butyl-2-(ethylthio)-7,8-dihydro-6H-indeno[5,4-b]furan (5b), 3-butyl-2-(ethylthio)-5,6-dimethoxybenzo[b]furan (4c), 1-butyl-2-(ethylthio)naphtho[2,1-b]furan (5d), ((1-butyl-2-(ethylthio)naphtho[2,1-b]furan-8-yl)oxy)triisopropylsilane (5e), 2-ethylthio-3-butylbenzofuro[6,5-b]benzofuran (4f), and 2-ethylthio-3-butylbenzo[b]furo[2,3-g]benzofuran (5f) were prepared from the corresponding phenols and alkynyl sulfoxides.

Synthesis of 2-(ethylthio)-3-(phenethoxymethyl)benzofuran (3d)

To a mixture of phenol (1a) (9.4 mg, 0.10 mmol, 2.0 equiv), (2-((3-(ethylsulfinyl)prop-2-yn-1yl)oxy)ethyl)benzene (2d) (11.7 mg, 49.6 µmol) and 2,6-di-*tert*-butylpyridine (33.7 µL, 0.156 mmol, 3.0 equiv) in dichloromethane (0.50 mL) was added trifluoroacetic anhydride (20.9 µL, 0.150 mmol, 1.5 equiv) at room temperature. After stirring for 1 h at the same temperature, to the mixture was added an aqueous saturated solution of sodium bicarbonate (5 mL). The mixture was extracted with dichloromethane (15 mL × 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/CH₂Cl₂ = 3/1) to give 2-(ethylthio)-3-(phenethoxymethyl)benzofuran (3d) (11.4 mg, 36.5 µmol, 74%) as a colorless oil.

A typical procedure for the synthesis of thiosulfonates from alkyl halides and sodium thiosulfonate

Et—I + NaSTs
$$\xrightarrow{Ts_S}Et$$

(2.0 equiv) rt, 48 h

To a solution of sodium 4-methylbenzenesulfonothioate (6.30 g, 30.0 mmol) in DMF (90 mL) was added iodoethane (4.82 mL, 60.0 mmol) at room temperature. After stirring for 48 h at room temperature, to this was

added water (150 mL). The mixture was extracted with *n*-hexane/EtOAc = 4/1 (50 mL × 3), and the combined organic extract was washed with brine (50 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel 90 g, *n*-hexane/EtOAc = 3/1) to give S-ethyl 4-methylbenzenesulfonothioate (6.42 g, 29.7 mmol, 99%) as a colorless solid.

According to the procedure for preparing *S*-ethyl 4-methylbenzenesulfonothioate, *S*-methyl 4-methylbenzenesulfonothioate, *S*-benzyl 4-methylbenzenesulfonothioate, and *S*-(6-chlorohexyl) 4-methylbenzenesulfonothioate were prepared from the corresponding alkyl halides and sodium thiosulfonate.

A typical procedure for the synthesis of alkynyl sulfides from hex-1-yne and thiosulfonates S7

n-Bu *H* $\xrightarrow{n-BuLi (1.0 equiv)} (1.0 equiv) \\ THE, 0 °C, 10 min \\ 15 min \\ THF, 0 °C \\$

To a mixture of 1-hexyne (614 mg, 7.48 mmol) and N,N,N',N'-tetramethylethylenediamine (TMEDA) (867 mg, 7.46 mmol, 1.0 equiv) dissolved in THF (15 mL) was added *n*-BuLi (0.98 M in *n*-hexane, 7.6 mL, 7.5 mmol, 1.0 equiv) at 0 °C. After stirring for 10 min at the same temperature, to the mixture was added *S*-ethyl 4-methylbenzenesulfonothioate (1.61 g, 7.46 mmol, 1.0 equiv) dissolved in THF (7 mL). After stirring for 10 min at the same temperature. After stirring for 15 min at room temperature, the mixture was allowed to warm to room temperature. After stirring for 15 min at room temperature, the mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL), washed with water (10 mL) and brine (10 mL), and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 35 g, *n*-hexane) to give ethyl hex-1-yn-1-yl sulfide (696 mg, 4.89 mmol, 66%) as a colorless oil.

According to the procedure for preparing ethyl hex-1-yn-1-yl sulfide, hex-1-yn-1-yl 4-tolyl sulfide, 4-bromophenyl hex-1-yn-1-yl sulfide, 4-(ethylthio)but-3-yn-1-ol (*n*-BuLi (2.0 equiv) and TMEDA (2.0 equiv) were used), hex-1-yn-1-yl methyl sulfide, benzyl hex-1-yn-1-yl sulfide, and 6-chlorohexyl hex-1-yn-1-yl sulfide were prepared from the corresponding hex-1-yne and thiosulfonates.

A typical procedure for the preparation of sulfoxides from sulfides ^{S8}

To a solution of ethyl hex-1-yn-1-yl sulfide (695 mg, 4.89 mmol) in CH₂Cl₂ (25 mL) was slowly added *m*chloroperbenzoic acid (*m*CPBA) (ca. 77%, 1.10 g, ca. 4.9 mmol, ca. 1 equiv) at 0 °C. After stirring for 10 min at the same temperature, the mixture was allowed to warm to room temperature. After stirring for 2 h at room temperature, to the mixture was added an aqueous saturated solution of potassium carbonate (5 mL) and an aqueous saturated solution of sodium thiosulfate (5 mL). The mixture was extracted with CH₂Cl₂ (10 mL × 3). The combined organic extract was washed with brine (10 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 16 g, *n*-hexane/EtOAc = 2/1) to give 1-(ethylsulfinyl)hex-1-yne (**2a**) (666 mg, 4.21 mmol, 86%) as a colorless oil.

According to the procedure for preparing 1-(ethylsulfinyl)hex-1-yne (2a), (4-(ethylsulfinyl)but-3-yn-1yl)benzene (2b), 1-((ethylsulfinyl)ethynyl)-4-methylbenzene (2e), 1-chloro-4-((ethylsulfinyl)ethynyl)benzene (2f), 1-(hex-1-yn-1-ylsulfinyl)-4-methylbenzene (2g), 1-bromo-4-(hex-1-yn-1-ylsulfinyl)benzene (2h), 1-(methylsulfinyl)hex-1-yne (2i), ((hex-1-yn-1-ylsulfinyl)methyl)benzene (2j), 1-((6-chlorohexyl)sulfinyl)hex-1yne (2k), and 3-butyl-2-(ethylsulfinyl)benzofuran (7) were prepared from the corresponding sulfides. Synthesis of 4-(ethylsulfinyl)but-3-yn-1-yl 4-methylbenzoate (2c)^{S9}

To a mixture of 4-(ethylthio)but-3-yn-1-ol (49.5 mg, 0.380 mmol), Et₃N (106 μ L, 0.760 mmol, 2.0 equiv), and 4-dimethylaminopyridine (DMAP) (2.3 mg, 19 μ mol, 5 mol%) dissolved in CH₂Cl₂ (3 mL) was added 4-methylbenzoyl chloride (75.3 μ L, 0.570 mmol, 1.5 equiv) at 0 °C. After stirring for 10 min at the same temperature, the mixture was allowed to warm to room temperature. After stirring for 4 h at room temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (15 mL × 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 4 g, *n*-hexane/EtOAc = 20/1) to give 4-(ethylthio)but-3-yn-1-yl 4-methylbenzoate (78.7 mg, 0.317 mmol, 84%) as a colorless oil.

To a solution of 4-(ethylthio)but-3-yn-1-yl 4-methylbenzoate (78.7 mg, 0.317 mmol) in CH₂Cl₂ (2 mL) was slowly added *m*CPBA (ca. 77%, 76.2 mg, ca. 0.34 mmol, ca. 1.1 equiv) at 0 °C. After stirring for 10 min at the same temperature, the mixture was allowed to warm to room temperature. After stirring for 2 h at room temperature, to the mixture was added an aqueous saturated solution of potassium carbonate (5 mL) and an aqueous saturated solution of sodium thiosulfate (5 mL). The mixture was extracted with CH₂Cl₂ (10 mL \times 3). The combined organic extract was washed with brine (10 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 2.4 g, AcOEt) to give 4-(ethylsulfinyl)but-3-yn-1-yl 4-methylbenzoate (**2c**) (73.0 mg, 0.276 mmol, 88%) as a colorless solid.

Synthesis of (2-((3-(ethylsulfinyl)prop-2-yn-1-yl)oxy)ethyl)benzene (2d)

To a solution of (2-(prop-2-yn-1-yloxy)ethyl)benzene (161 mg, 1.00 mmol) in THF (2.5 mL) was added *n*-BuLi (1.57 M in *n*-hexane, 0.70 mL, 1.1 mmol, 1.1 equiv) at 0 °C. After stirring for 15 min at the same temperature, to the mixture was added *S*-ethyl 4-methylbenzenesulfonothioate (260 mg, 1.20 mmol, 1.2 equiv) dissolved in THF (2.5 mL). After stirring for 2 h at the same temperature, the mixture was allowed to warm to room temperature. After stirring for 15 min at room temperature, to the mixture was added an aqueous saturated solution of ammonium chloride (5 mL). The mixture was extracted with EtOAc (10 mL × 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 8 g, *n*-hexane/EtOAc = 10/1) to give ethyl 3-phenethoxyprop-1-yn-1-yl sulfide (185 mg, 0.838 mmol, 84%) as a yellow oil.

To a solution of ethyl(3-phenethoxyprop-1-yn-1-yl)sulfane (184.7 mg, 0.838 mmol) in CH₂Cl₂ (4 mL) was slowly added *m*CPBA (ca. 77%, 187.8 mg, ca. 0.84 mmol, ca. 1.1 equiv) at 0 °C. After stirring for 10 min at the same temperature, the mixture was allowed to warm to room temperature. After stirring for 2 h at room temperature, to the mixture was added an aqueous saturated solution of potassium carbonate (5 mL) and an aqueous saturated solution of sodium thiosulfate (5 mL). The mixture was extracted with CH₂Cl₂ (10 mL \times 3). The combined organic extract was washed with brine (10 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 2 g, CH₂Cl₂) to give (2-((3-(ethylsulfinyl)prop-2-yn-1-yl)oxy)ethyl)benzene (**2d**) (128 mg, 0.539 mmol, 64%) as a colorless oil.

Synthesis of 3-butyl-2-(ethylsulfonyl)benzofuran (10)

In a 5 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of 3-butyl-2-(ethylthio)benzofuran (**3a**) (23.2 mg, 99.1 µmol) dissolved in dichloromethane (1.5 mL) was added *m*-chloroperoxybenzoic acid (ca. 77%) (67.2 mg, ca. 0.34 mmol, ca. 3.4 equiv) at room temperature. After stirring for 24 h at 45 °C, to the mixture was added saturated aqueous potassium carbonate (5 mL) and saturated aqueous sodium thiosulfate (5 mL). The mixture was extracted with CH_2Cl_2 (10 mL × 3). The combined organic extract was washed with brine (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified preparative TLC (*n*-hexane/EtOAc = 1/1) to give 3-butyl-2-(ethylsulfonyl)benzo[*b*]furan (**10**) (16.0 mg, 60.2 µmol, 61%) as a colorless solid.

Synthesis of 3-butyl-2-(2-(ethylthio)-3-methoxyphenoxy)benzofuran (12)

To a mixture of 3-methoxy-2-(trimethylsilyl)phenyl triflate (11) (16.8 mg, 51.2 µmol) and 3-butyl-2-(ethylsulfinyl)benzofuran (9) (25.0 mg, 0.100 mmol, 2.0 equiv) dissolved in 1,4-dioxane (1.0 mL) were added 18-crown-6-ether (26.4 mg, 0.100 mmol, 2.0 equiv) and potassium fluoride (5.8 mg, 0.10 mmol, 2.0 equiv) at room temperature. After stirring for 24 h at 110 °C, the mixture was cooled to room temperature. To this was added water (3 mL). The mixture was extracted with EtOAc (10 mL \times 3). The combined organic extract was washed with brine (5 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/CH₂Cl₂ = 1/1) to give 3-butyl-2-(2-(ethylthio)-3-methoxyphenoxy)benzo[*b*]furan (12) (7.1 mg, 20 µmol, 39%) as a colorless oil.

Mechanistic Studies

Control experiments through the reaction of 2a with TFAA.

To a solution of 1-(ethylsulfinyl)hex-1-yne (**2a**) (7.7 mg, 49 μ mol) in dichloromethane (0.50 mL) was added trifluoroacetic anhydride (10.5 μ L, 75.5 μ mol, 1.5 equiv) at room temperature. After stirring for 1 h at room temperature, to the mixture was added an aqueous saturated solution of sodium bicarbonate (5 mL). After stirring for 5 min at room temperature, the mixture was extracted with dichloromethane (15 mL × 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (18.4 mg, 0.110 mmol) as an internal standard. The mixture was dissolved in CDCl₃ and analyzed by ¹H NMR (400 MHz). As a result, ¹H NMR yield of **2a** was determined to be 57% by comparing the relative values of integration for the peaks observed at 2.44 ppm (2H for **2a**) with that of 1,1,2,2-tetrachloroethane observed at 5.96 ppm.

To a solution of 1-(ethylsulfinyl)hex-1-yne (2a) (8.1 mg, 51 µmol) in dichloromethane (0.50 mL) was added trifluoroacetic anhydride (10.5 µL, 75.5 µmol, 1.5 equiv) at room temperature. After stirring for 1 h at room temperature, to the mixture was added phenol (1a) (9.4 mg, 0.10 mmol, 2.0 equiv) in dichloromethane (0.50 mL). After stirring for 1 h at the same temperature, the mixture was extracted with dichloromethane (15 mL \times 3). The combined organic extract was washed with brine (20 mL) and dried (Na₂SO₄). After filtration, the filtrate was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (18.1 mg, 0.108 mmol) as an internal standard. The mixture was dissolved in CDCl₃ and analyzed by ¹H NMR (400 MHz). As a result, ¹H NMR yield of **3a** was determined to be 55% by comparing the relative values of integration for the peaks observed at 7.42 ppm (1H for **3a**) with that of 1,1,2,2-tetrachloroethane observed at 5.96 ppm.

Computational Methods

The optimized structures of methyl propyl sulfoxide, methyl propenyl sulfoxide, methyl propynyl sulfoxides, TFAA, and sulfuranes **Ia–Ic** were computed with Spartan '18 program (Wavefunction. Inc., Irvine, CA) using density functional theory (B3LYP/6-311G(d,p)).

Methyl propyl sulfoxide

Optimized structure (C: black; H: grey; O: red; S: green)

(total energy: -631.918362 hartrees)

Cartesian Coordinates (Angstroms)				
H	1.011881	1.705835	-3.145414	
С	0.886580	1.634150	-2.065314	
Н	1.860248	1.531298	-1.583848	
Н	0.348146	2.507910	-1.693206	
S	-0.102806	0.120685	-1.753431	
0	0.762521	-1.060247	-2.151177	
С	-0.054835	0.213521	0.092662	
H	0.999681	0.285562	0.375360	
Н	-0.571307	1.136250	0.376971	
С	-0.712143	-1.019850	0.707724	
Н	-0.221301	-1.911960	0.309033	
Н	-1.761201	-1.068970	0.395435	
С	-0.627887	-1.016596	2.237993	
Н	0.412463	-0.999725	2.576097	
Н	-1.096848	-1.911977	2.653861	
Н	-1.133190	-0.145886	2.667255	

Trifluoroacetic anhydride

Optimized structure (C: black; H: grey; O: red; S: green; F: blue)

(total energy: -977.443916 hartrees)

Cartes	ian Coordinat	es (Angstrom	s)
С	-2.325197	0.000000	0.397337
С	-1.213869	0.000000	-0.691054
0	-1.411005	0.000000	-1.855500
0	0.000000	0.000000	-0.034694
С	1.213869	0.000000	-0.691054
0	1.411005	0.000000	-1.855500
С	2.325197	0.000000	0.397337
F	-2.216261	1.089317	1.172969
F	-2.216261	-1.089317	1.172969
F	-3.522758	0.000000	-0.179374
F	2.216261	1.089317	1.172969
F	2.216261	-1.089317	1.172969
F	3.522758	0.000000	-0.179374

Sulfurane Ia

Optimized structure (C: black; H: grey; O: red; S: green; F: blue)

(total energy: -1609.395718 hartrees)

Cartes	ian Coordina	ates (Angstrom	S)
S	-0.065968	-0.080285	0.569860
С	-1.636982	-0.612696	1.336838
Н	-2.398458	0.119175	1.080234
Н	-1.455965	-0.628575	2.409499
H	-1.874929	-1.602325	0.957189
С	-0.481310	0.021100	-1.226619
H	-0.841983	-0.970073	-1.496824
Н	-1.281749	0.755388	-1.295765
0	-0.622316	1.806931	0.664776
С	-0.459287	2.367793	1.836388
0	-0.221792	1.830999	2.888987
С	-0.621433	3.914394	1.727265
F	0.299766	4.426882	0.886424
F	-1.840860	4.235495	1.247812
F	-0.475304	4.502508	2.914421
0	0.435444	-1.944922	0.201417
С	0.983911	-2.570650	1.213152
0	1.053249	-2.207985	2.359853
С	1.558857	-3.946707	0.757597
F	0.559865	-4.759797	0.352600
F	2.206741	-4.551032	1.753589
F	2.413260	-3.799542	-0.273410
С	0.746628	0.428014	-2.037366
Н	1.541163	-0.307450	-1.886232
Н	1.116270	1.393153	-1.679794
С	0.402468	0.524886	-3.528341
Н	1.281538	0.826935	-4.101568
H	-0.382483	1.264662	-3.708818
Н	0.061661	-0.436275	-3.923163

Methyl propenyl sulfoxide

Optimized structure (C: black; H: grey; O: red; S: green)

(total energy: -630.685318 hartrees)

Cartesian Coordinates (Angstroms)					
Н	1.196986	1.505697	-2.939815		
С	0.975714	1.390063	-1.878786		
Н	1.827937	0.959045	-1.353280		

Н	0.687020	2.350747	-1.448164
S	-0.440452	0.221907	-1.756640
0	0.076259	-1.147388	-2.149109
С	-0.576166	0.252854	0.048148
Н	-0.878979	1.208889	0.466328
С	-0.404191	-0.865280	0.744358
Н	-0.128061	-1.757632	0.184109
С	-0.556695	-0.992664	2.229221
Н	0.375645	-1.346404	2.681856
Н	-1.324696	-1.734458	2.473348
Н	-0.830320	-0.045376	2.698427

Sulfurane Ib

Optimized structure (C: black; H: grey; O: red; S: green; F: blue)

(total energy: -1608.156494 hartrees)

Cartes	ian Coordin	ates (Angstroms	5)
S	0.164881	-0.164519	0.398667
С	-1.459328	-0.689465	1.067452
Н	-2.170991	0.103960	0.858420
Н	-1.307480	-0.824493	2.136867
Н	-1.732362	-1.622507	0.581316
0	-0.377296	1.727173	0.499841
С	-0.254895	2.262145	1.689053
0	-0.054744	1.707278	2.739377
С	-0.427400	3.809774	1.602152
F	0.452823	4.340496	0.728092
F	-1.669158	4.123308	1.176325
F	-0.237135	4.388258	2.787225
0	0.644626	-2.047148	0.095428
С	1.086384	-2.670201	1.159463
0	1.089631	-2.280796	2.299577
С	1.615698	-4.088203	0.783774
F	0.595130	-4.864871	0.359203
F	2.178666	-4.683166	1.836186
F	2.527603	-4.029797	-0.204120
С	-0.105355	-0.125963	-1.383854
Н	-0.298680	-1.117683	-1.769372
С	0.033998	0.963734	-2.131644
H	0.250028	1.916118	-1.662135
С	-0.111944	0.953600	-3.621030
Н	0.813447	1.305156	-4.088273
Н	-0.902089	1.646521	-3.927368
Н	-0.344058	-0.038707	-4.010624

Methyl propynyl sulfoxide

Optimized structure (C: black; H: grey; O: red; S: green)

(total energy: -629.423397 hartrees)

Cartes	ian Coordinate	es (Angstroms)
H	0.960073	1.674712	-2.868487
С	0.818856	1.382491	-1.827764
H	1.755751	1.030876	-1.397738
H	0.394913	2.204271	-1.249675
S	-0.374522	-0.017638	-1.852861
0	0.327702	-1.172568	-2.518138
С	-0.409416	-0.258450	-0.122140
С	-0.546799	-0.596693	1.030031
С	-0.700807	-0.980802	2.423556
H	0.049148	-0.493979	3.052882
H	-0.582742	-2.062627	2.533181
H	-1.692158	-0.709593	2.797153

Sulfurane Ic

Optimized structure (C: black; H: grey; O: red; S: green; F: blue)

(total energy: -1606.890141 hartrees)

Cartesian Coordinates (Angstroms)					
S	-0.0	024231	0	.241804	0.263634
С	0.5	566594	-1	.271762	1.127652
Н	-0.2	180808	-2	2.043286	0.970816
Н	0.6	546921	-0	.985457	2.174165
H	1.5	529227	-1	.530666	0.697559
0	-1.9	903677	-0	.364992	0.452806
С	-2.3	396693	-0	.116454	1.638064
0	-1.8	805730	0	.263941	2.618616
С	-3.9	929583	-0	.401553	1.668602
F	-4.5	576786	0	.336209	0.747991
F	-4.2	168770	-1	.702476	1.401658
F	-4.4	445592	-0	.122156	2.866201
0	1.8	348694	0	.753463	-0.133456
С	2.4	125476	1	.359281	0.872050
0	2.0	09611	1	.478725	1.998301
С	3.8	312235	1	.934065	0.449354
F	4.6	536469	0	.937161	0.065174
F	4.3	389939	2	.581790	1.462119
F	3.6	587175	2	.789024	-0.582313
С	-0.1	136151	-0	.239174	-1.356738
С	-0.2	258679	-0	.485305	-2.528764
С	-0.4	402507	-0	.792924	-3.938818

Н	-0.432419	0.126827	-4.529094
Н	-1.328052	-1.347085	-4.116923
Н	0.437334	-1.398998	-4.288656

Characterization Data of New Compounds

Ethyl hex-1-yn-1-yl sulfide, ^{S11} hex-1-yn-1-yl methyl sulfide, ^{S11} benzyl hex-1-yn-1-yl sulfide, ^{S11} 1- (ethylsulfinyl)hex-1-yne (2i), ^{S12} and 1-(methylsulfinyl)hex-1-yne (2i) ^{S13} were identical in spectra data with those reported in the literature.

3-Butyl-2-(ethylthio)benzo[*b*]furan (**3a**)

Colorless oil; TLC $R_f 0.55$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.29 (t, 3H, J = 7.4 Hz), 1.33–1.46 (m, 2H), 1.58–1.71 (m, 2H), 2.76 (t, 2H, J = 7.6 Hz), 2.89 (q, 2H, J = 7.4 Hz), 7.21 (dd, 1H, J = 7.8, 7.8, 1.0 Hz), 7.28 (ddd, 1H, J = 7.8, 7.8 1.0 Hz), 7.42 (dd, 1H, J = 7.8, 1.0 Hz), 7.51 (dd, 1H, J = 7.8, 1.0 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.3, 29.4, 31.8, 111.0, 119.5, 122.4, 124.5, 125.6, 129.0, 145.7, 155.6; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₄H₁₈OS⁻⁺ 234.1078; Found 234.1080.

2-(Ethylthio)-3-phenethylbenzo[*b*]furan (**3b**)

Colorless oil; TLC $R_f 0.35$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.22 (t, 3H, J = 7.4 Hz), 2.75 (q, 2H, J = 7.4 Hz), 2.93–3.01 (m, 2H), 3.03–3.11 (m, 2H), 7.13–7.33 (m, 7H), 7.43 (d, 1H, J = 8.1 Hz), 7.48 (d, 1H, J = 7.6 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 15.3, 26.8, 29.3, 35.9, 111.1, 119.4, 122.4, 124.5, 124.6, 126.0, 128.4, 128.5, 128.7, 141.4, 146.4, 155.6; HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₈H₁₈OS⁺⁺ 282.1078; Found 282.1077.

2-(2-(Ethylthio)benzo[*b*]furan-3-yl)ethyl 4-methylbenzoate (3c)

Colorless solid; TLC $R_f 0.57$ (*n*-hexane/CH₂Cl₂ = 1/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.29 (t, 3H, J = 7.4 Hz), 2.40 (s, 3H), 2.92 (q, 2H, J = 7.4 Hz), 3.23 (t, 2H, J = 7.0 Hz), 4.54 (t, 2H, J = 7.0 Hz), 7.18–7.35 (m, 4H), 7.44 (d, 1H, J = 8.1 Hz), 7.56 (d, 1H, J = 7.7 Hz), 7.85–7.93 (AA'BB', 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 15.3, 21.6, 24.4, 29.3, 63.8, 111.0, 119.4, 121.1, 122.6, 124.8, 127.3, 128.6, 129.0, 129.7, 143.6, 147.3, 155.6, 166.6; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₀H₂₀NaO₃S⁺ 363.1031; Found 363.1032.

2-(Ethylthio)-3-(phenethoxymethyl)benzo[*b*]furan (**3d**)

Colorless oil; TLC R_f 0.28 (*n*-hexane/CH₂Cl₂ = 3/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.28 (t, 3H, J = 7.4 Hz), 2.87–2.98 (m, 4H), 3.71 (t, 2H, J = 7.1 Hz), 4.72 (s, 2H), 7.16–7.24 (m, 4H), 7.24–7.33 (m, 3H), 7.42 (d, 1H, J = 8.2 Hz), 7.53 (d, 1H, J = 7.7 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 15.3, 29.3, 36.2, 63.8, 70.8, 110.8, 120.3, 121.6, 122.8, 124.8, 126.1, 128.2, 128.3, 128.9, 138.9, 148.2, 155.7; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₀NaO₂S⁺ 335.1082; Found 335.1078.

2-(Ethylthio)-3-(4-tolyl)benzo[b]furan (3e)

Colorless oil; TLC R_f 0.43 (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.29 (t, 3H, J = 7.4 Hz), 2.44 (s, 3H), 2.98 (q, 2H, J = 7.4 Hz), 7.26 (dd, 1H, J = 7.8, 7.8 Hz), 7.29–7.37 (m, 3H), 7.46–7.56 (m, 3H), 7.63 (d, 1H, J = 7.8 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 15.2, 21.3, 28.8, 110.9, 119.9, 122.9, 124.4, 124.6, 128.4, 128.8, 129.1, 129.2, 137.3, 146.3, 155.5; HRMS (ESI) *m/z*: [M + K]⁺ Calcd for C₁₇H₁₆KOS⁺ 307.0559; Found 307.0559.

3-(4-Chlorophenyl)-2-(ethylthio)benzo[b]furan (3f)

Pale yellow oil; TLC $R_f 0.51$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.28 (t, 3H, J = 7.4 Hz), 2.99 (q, 2H, J = 7.4 Hz), 7.27 (ddd, 1H, J = 7.7, 7.7, 1.0 Hz), 7.34 (ddd, 1H, J = 7.7, 7.7, 1.3 Hz), 7.44–7.53 (m, 3H), 7.53–7.61 (m, 3H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 15.3, 28.8, 111.1, 119.6, 123.1, 123.2, 124.8, 128.0, 128.8, 130.4, 130.5, 133.4, 146.9, 155.6; HRMS (ESI) *m/z*: [M + K]⁺ Calcd for C₁₆H₁₃³⁵ClKOS⁺ 327.0013; Found 327.0012.

3-Butyl-2-(4-tolylthio)benzo[b]furan (3g)

Colorless oil; TLC $R_f 0.71$ (*n*-hexane/CH₂Cl₂ = 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.94$ (t, 3H, J = 7.4 Hz), 1.33–1.48 (m, 2H), 1.62–1.74 (m, 2H), 2.31 (s, 3H), 2.86 (t, 2H, J = 7.9 Hz), 7.04–7.12 (AA'BB', 2H), 7.14–7.22 (AA'BB', 2H), 7.26 (dd, 1H, J = 7.7, 7.7 Hz), 7.33 (dd, 1H, J = 7.7, 7.7 Hz), 7.46 (d, 1H, J = 7.7 Hz), 7.59 (d, 1H, J = 7.7 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.9$, 21.0, 22.5, 24.3, 31.8, 111.4, 119.9, 122.4, 125.2, 127.8, 128.4, 128.7, 129.8, 131.5, 136.5, 143.7, 155.9; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₉H₂₀NaOS⁺ 319.1133; Found 319.1133.

2-((4-Bromophenyl)thio)-3-butylbenzo[b]furan (3h)

Colorless oil; TLC $R_f 0.74$ (*n*-hexane/CH₂Cl₂ = 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.93$ (t, 3H, J = 7.4 Hz), 1.30–1.45 (m, 2H), 1.60–1.72 (m, 2H), 2.83 (t, 2H, J = 7.6 Hz), 7.03–7.12 (AA'BB', 2H), 7.27 (dd, 1H, J = 7.8, 7.8 Hz), 7.32–7.41 (m, 3H), 7.46 (d, 1H, J = 7.8 Hz), 7.60 (d, 1H, J = 7.8 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.8, 22.5, 24.3, 31.7, 111.5, 120.1, 120.3, 122.6, 125.6, 128.5, 128.9, 129.2, 132.1, 134.7, 142.1, 156.0;$ HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₇⁷⁹BrOS⁺⁺ 360.0183; Found 360.0182.

3-Butyl-2-(ethylthio)-5-methylbenzo[b]furan (3i)

Colorless oil; TLC R_f 0.50 (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (t, 3H, J = 7.4 Hz), 1.28 (t, 3H, J = 7.4 Hz), 1.33–1.45 (m, 2H), 1.58–1.70 (m, 2H), 2.45 (s, 3H), 2.75 (t, 2H, J = 7.7 Hz), 2.88 (q, 2H, J = 7.4 Hz), 7.09 (d, 1H, J = 8.4 Hz), 7.26–7.33 (m, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 21.4, 22.5, 24.3, 29.4, 31.8, 110.5, 119.3, 125.4, 125.7, 129.0, 131.7, 145.7, 154.0; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₅H₂₀OS⁺⁻ 248.1235; Found 248.1234.

3-Butyl-2-(ethylthio)-5-methoxybenzo[b]furan (3j)

Pale yellow oil; TLC $R_f 0.36$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.28 (t, 3H, J = 7.4 Hz), 1.32–1.45 (m, 2H), 1.57–1.69 (m, 2H), 2.72 (t, 2H, J = 7.7 Hz), 2.88 (q, 2H, J = 7.4 Hz), 3.86 (s, 3H), 6.88 (dd, 1H, J = 8.9, 2.6 Hz), 6.93 (d, 1H, J = 2.6 Hz), 7.30 (d, 1H, J = 8.9 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.3, 29.4, 31.7, 56.0, 102.2, 111.4, 112.9, 125.5, 129.4, 146.5, 150.6, 155.6; HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₅H₂O₂S⁺ 264.1184; Found 264.1185.

5-Bromo-3-butyl-2-(ethylthio)benzo[b]furan (3k)

Colorless oil; TLC $R_f 0.58$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.28 (t, 3H, J = 7.4 Hz), 1.32–1.43 (m, 2H), 1.55–1.67 (m, 2H), 2.70 (t, 2H, J = 7.7 Hz), 2.90 (q, 2H, J = 7.4 Hz), 7.28 (d, 1H, J = 8.6 Hz), 7.35 (dd, 1H, J = 8.6, 2.0 Hz), 7.61 (d, 1H, J = 2.0 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.9$, 15.3, 22.5, 24.1, 29.2, 31.7, 112.4, 115.4, 122.1, 124.7, 127.2, 131.0, 147.5, 154.3; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₄H₁₇⁷⁹BrOS⁺⁺ 312.0183; Found 312.0186.

3-Butyl-5-chloro-2-(ethylthio)benzo[b]furan (3l)

Colorless oil; TLC R_f 0.56 (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (t, 3H, J = 7.4 Hz), 1.28 (t, 3H, J = 7.4 Hz), 1.32–1.44 (m, 2H), 1.57–1.68 (m, 2H), 2.70 (t, 2H, J = 7.7 Hz), 2.91 (q, 2H, J = 7.4 Hz), 7.22 (dd, 1H, J = 8.7, 2.1 Hz), 7.32 (d, 1H, J = 8.7 Hz), 7.45 (d, 1H, J = 2.1 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.2, 29.2, 31.7, 111.9, 119.1, 124.5, 124.9, 127.9, 130.3, 147.6, 153.9; HRMS (ESI) m/z: [M + K]⁺ Calcd for C₁₄H₁₇³⁵ClKOS⁺ 307.0326; Found 307.0325.

Methyl 3-butyl-2-(ethylthio)benzo[*b*]furan-5-carboxylate (**3m**)

Colorless oil; TLC R_f 0.46 (*n*-hexane/EtOAc = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (t, 3H, J = 7.4 Hz), 1.29 (t, 3H, J = 7.4 Hz), 1.33–1.45 (m, 2H), 1.56–1.71 (m, 2H), 2.77 (t, 2H, J = 7.7 Hz), 2.92 (q, 2H, J = 7.4 Hz), 3.95 (s, 3H), 7.43 (d, 1H, J = 8.6 Hz), 8.00 (dd, 1H, J = 8.6, 1.7 Hz), 8.22 (d, 1H, J = 1.7 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.2, 29.2, 31.8, 52.1, 110.8, 121.9, 124.6, 125.8, 126.2, 129.0, 147.6, 158.2, 167.3; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₀NaO₃S⁺ 315.1031; Found 315.1036.

2-(3-Butyl-2-(ethylthio)benzo[b]furan-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n)

Colorless oil; TLC $R_f 0.42$ (*n*-hexane/CH₂Cl₂ = 1/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.27 (t, 3H, J = 7.4 Hz), 1.32–1.45 (m, 14H), 1.60–1.72 (m, 2H), 2.76 (t, 2H, J = 7.7 Hz), 2.89 (q, 2H, J = 7.4 Hz), 7.40 (d, 1H, J = 8.2 Hz), 7.74 (d, 1H, J = 8.2 Hz), 7.97 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.6, 24.3, 24.9, 29.3, 32.0, 83.8, 110.4, 125.8, 126.7, 128.7, 131.2, 145.8, 157.8 (the signal for the carbon which is attached to the boron atom was not observed); HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₀H₂₉BNaO₃S⁺ 383.1828; Found 383.1832.

3-Butyl-2-(ethylthio)-7-(trimethylsilyl)benzo[b]furan-6-yl trifluoromethanesulfonate (30)

Colorless oil; TLC $R_f 0.37$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.51$ (s, 9H), 0.94 (t, 3H, J = 7.3 Hz), 1.30 (t, 3H, J = 7.3 Hz), 1.32–1.43 (m, 2H), 1.55–1.66 (m, 2H), 2.71 (t, 2H, J = 7.6 Hz), 2.92 (q, 2H, J = 7.3 Hz), 7.19 (d, 1H, J = 8.6 Hz), 7.49 (d, 1H, J = 8.6 Hz); ¹³C {¹H} NMR (CDCl₃, 101 MHz): $\delta 0.3$, 13.9, 15.4, 22.5, 24.0, 29.0, 31.8, 115.2, 115.9, 118.6 (q, $J_{C-F} = 322$ Hz) 120.9, 123.9, 127.6, 147.9, 151.2, 159.6; ¹⁹F NMR (CDCl₃, 376 MHz): $\delta -73.1$ (s); HRMS (ESI) *m*/*z*: [M + K]⁺ Calcd for C₁₈H₂₅F₃KO₄S₂Si⁺ 493.0553; Found 493.0553.

3-Butyl-2-(ethylthio)naphtho[1,2-b]furan (3p)

Colorless oil; TLC R_f 0.39 (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.97 (t, 3H, J = 7.4 Hz), 1.33 (t, 3H, J = 7.4 Hz), 1.37–1.49 (m, 2H), 1.65–1.77 (m, 2H), 2.85 (t, 2H, J = 7.4 Hz), 2.93 (q, 2H, J = 7.4 Hz), 7.49 (dd, 1H, J = 8.1 Hz), 7.54–7.62 (m, 2H), 7.65 (d, 1H, J = 8.6 Hz), 7.92 (d, 1H, J = 8.1 Hz), 8.33 (d, 1H, J = 8.1 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.2, 30.1, 32.2, 118.2, 120.3, 121.0, 122.9, 124.3, 125.3, 126.3, 127.4, 128.3, 131.5, 144.7, 151.5; HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₈H₂₀OS⁺ 284.1235; Found 284.1236.

3-Butyl-2-(ethylthio)-6-methylbenzo[*b*]furan (**4a**) 3-Butyl-2-(ethylthio)-4-methylbenzo[*b*]furan (**5a**)

An inseparable mixture of **4a** and **5a** (75:25) was obtained. Pale yellow oil; TLC $R_f 0.52$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz) for **4a**: $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.27 (t, 3H, J = 7.4 Hz), 1.33–1.44 (m, 2H), 1.54–1.70 (m, 2H), 2.47 (s, 3H), 2.74 (t, 2H, J = 7.6 Hz), 2.87 (q, 2H, J = 7.4 Hz), 7.05 (d, 1H, J = 7.9 Hz), 7.23 (s, 1H), 7.39 (d, 1H, J = 7.9 Hz); for **5a**: 0.97 (t, 3H, J = 7.4 Hz), 1.29 (t, 3H, J = 7.4 Hz), 1.39–1.50 (m, 2H), 1.54–1.70 (m, 2H), 2.63 (s, 3H), 2.85 (t, 2H, J = 7.8 Hz), 2.89 (q, 2H, J = 7.4 Hz), 6.96 (d, 1H, J = 7.7 Hz), 7.15 (dd, 1H, J = 7.7, 7.7 Hz) 7.27 (d, 1H, J = 7.7 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz) for **4a**: δ 13.9, 15.3, 21.7, 22.5, 24.3, 29.5, 31.8, 111.2, 119.1, 123.6, 125.8, 126.5, 134.9, 144.8, 156.0; for **5a**: 14.0, 15.3, 19.1, 22.6, 25.4, 29.3, 34.0, 108.8, 124.0, 124.3, 126.2, 127.1, 131.1, 145.7, 155.9; HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₅H₂₀OS⁺⁺ 248.1235; Found 248.1236.

3-Butyl-2-(ethylthio)-6,7-dihydro-5*H*-indeno[5,6-*b*]furan (**4b**) 1-Butyl-2-(ethylthio)-7,8-dihydro-6*H*-indeno[5,4-*b*]furan (**5b**)

An inseparable mixture of **4b** and **5b** (83:17) was obtained. Colorless oil; TLC $R_f 0.48$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz) for **4b**: δ 0.95 (t, 3H, J = 7.4 Hz), 1.27 (t, 3H, J = 7.4 Hz), 1.32–1.50 (m, 2H), 1.53–1.72 (m, 2H), 2.07–2.19 (m, 2H), 2.73 (t, 2H, J = 7.6 Hz), 2.85 (q, 2H, J = 7.4 Hz), 2.92–3.03 (m, 4H), 7.26 (s, 1H), 7.32 (s, 1H); for **5b**: 0.95–1.00 (m 3H), 1.28 (t, 3H, J = 7.4 Hz), 1.32–1.50 (m, 2H), 1.53–1.72 (m, 2H), 2.14–2.26 (m, 2H), 2.77 (t, 2H, J = 7.8 Hz), 2.88 (q, 2H, J = 7.4 Hz), 2.92–3.03 (m, 2H), 3.18 (t, 2H, J = 7.4 Hz), 7.14 (d, 1H, J = 8.2 Hz), 7.22 (d, 1H, J = 8.2 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz) for **4b**: δ 13.9, 15.2, 22.6, 24.4, 26.4, 29.6, 31.9, 32.4, 33.0, 106.8, 114.4, 125.9, 127.5, 138.5, 141.8, 144.7, 155.2; for **5b**: 14.0, 15.3, 22.5, 25.0, 25.8, 29.4, 31.5, 32.2, 33.6, 108.6, 120.5, 125.5, 125.8, 135.6, 138.2, 144.6, 155.1; HRMS (EI) *m/z*: [M]⁺⁺ Calcd for C₁₇H₂₂OS⁺⁺ 274.1391; Found 274.1390.

3-Butyl-2-(ethylthio)-5,6-dimethoxybenzo[b]furan (4c)

Colorless oil; TLC $R_f 0.38$ (*n*-hexane/CH₂Cl₂ = 1/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.3 Hz), 1.26 (t, 3H, J = 7.4 Hz), 1.32–1.45 (m, 2H), 1.57–1.68 (m, 2H), 2.72 (t, 2H, J = 7.6 Hz), 2.88 (q, 2H, J = 7.4 Hz), 3.91 (s, 3H), 3.93 (s, 3H), 6.90 (s, 1H), 6.99 (s, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 15.3, 22.5, 24.4, 29.9, 31.9, 56.2, 56.5, 95.1, 101.0, 120.7, 126.4, 144.0, 146.2, 148.4, 150.5; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₆H₂₂NaO₃S⁺ 317.1187; Found 317.1187.

1-Butyl-2-(ethylthio)naphtho[2,1-*b*]furan (5d)

Pale yellow oil; TLC $R_f 0.42$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.00 (t, 3H, J = 7.4 Hz), 1.31 (t, 3H, J = 7.4 Hz), 1.45–1.60 (m, 2H), 1.69–1.81 (m, 2H), 2.91 (t, 2H, J = 7.4 Hz), 3.12 (q, 2H, J = 7.4 Hz), 7.45–7.52 (m, 1H), 7.56–7.64 (m, 2H), 7.72 (d, 1H, J = 8.9 Hz), 7.95 (d, 1H, J = 8.0 Hz), 8.27 (d, 1H, J = 8.2 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 14.0, 15.3, 22.6, 26.0, 29.9, 32.0, 112.3, 121.9, 123.1, 124.1, 126.0, 126.5, 127.8, 128.1, 129.1, 130.6, 145.2, 153.8; HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₈H₂₀OS⁺ 284.1235; Found 284.1224.

((1-Butyl-2-(ethylthio)naphtho[2,1-b]furan-8-yl)oxy)triisopropylsilane (5e)

Pale yellow oil; TLC $R_f 0.27$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.98$ (t, 3H, J = 7.4 Hz), 1.16 (d, 18H, J = 7.3 Hz), 1.27–1.42 (m, 6H), 1.44–1.58 (m, 2H), 1.67–1.78 (m, 2H), 2.90 (q, 2H, J = 7.4 Hz), 3.07 (t, 2H, J = 7.8 Hz), 7.11 (dd, 1H, J = 8.8, 2.3 Hz), 7.45 (d, 1H, J = 8.8 Hz), 7.63 (d, 1H, J = 8.8 Hz), 7.68 (d, 1H, J = 2.3 Hz), 7.80 (d, 1H, J = 8.8 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 12.8, 14.1, 15.3, 18.0, 22.7, 26.2, 30.0, 32.5, 110.0, 111.1, 119.6, 121.0, 125.8 (two signals overlapped), 127.7, 129.3, 130.4, 144.6, 154.3, 154.8; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₂₇H₄₀NaO₂SSi⁺ 479.2416; Found 479.2408.

2-Ethylthio-3-butylbenzofuro[6,5-b]benzofuran (4f)

Yellow oil; TLC $R_f 0.54$ (*n*-hexane/CH₂Cl₂ = 5/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.98$ (t, 3H, J = 7.3 Hz), 1.31 (t, 3H, J = 7.4 Hz), 1.38–1.50 (m, 2H), 1.67–1.79 (m, 2H), 2.85 (t, 2H, J = 7.6 Hz), 2.92 (q, 2H, J = 7.4 Hz), 7.35 (dd, 1H, J = 7.9, 7.9 Hz), 7.43 (dd, 1H, J = 7.9, 7.9 Hz), 7.55 (d, 1H, J = 7.9 Hz), 7.59 (d, 1H, J = 0.6 Hz), 7.96 (d, 1H, J = 0.6 Hz), 7.99 (d, 1H, J = 7.9 Hz); ¹³C {¹H} NMR (CDCl₃, 101 MHz): δ 14.0, 15.3, 22.6, 24.5, 29.5, 31.9, 94.6, 109.9, 111.5, 120.3, 120.5, 122.6, 124.3, 125.5, 125.8, 126.5, 146.0, 154.9, 155.3, 156.8; HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₂₀O₂S⁺ 324.1184; Found 324.1183.

2-Ethylthio-3-butylbenzo[b]furo[2,3-g]benzofuran (5f)

Colorless solid; TLC $R_f 0.34$ (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.01 (t, 3H, J = 7.4 Hz), 1.33 (t, 3H, J = 7.4 Hz), 1.41–1.54 (m, 2H), 1.79–1.91 (m, 2H), 2.94 (q, 2H, J = 7.4 Hz), 3.03 (t, 2H, J = 7.5 Hz), 7.37 (dd, 1H, J = 7.5, 7.5 Hz), 7.40–7.48 (m, 2H), 7.65 (d, 1H, J = 8.0 Hz), 7.82 (d, 1H, J = 8.5 Hz), 7.96 (d, 1H, J = 7.5 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 14.0, 15.3, 22.3, 25.2, 29.6, 32.3, 106.7, 111.7, 115.2, 116.3, 118.3, 119.9, 122.9, 124.6, 124.7, 125.7, 145.9, 148.8, 156.2 (two signals overlapped); HRMS (ESI) *m/z*: [M + K]⁺ Calcd for C₂₀H₂₀KO₂S⁺ 363.0821; Found 363.0832.

3-Butyl-2-(methylthio)benzo[b]furan (3q)

Colorless oil; TLC R_f 0.50 (*n*-hexane/CH₂Cl₂ = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.95 (t, 3H, J = 7.4 Hz), 1.32–1.45 (m, 2H), 1.59–1.71 (m, 2H), 2.47 (s, 3H), 2.75 (t, 2H, J = 7.5 Hz), 7.21 (dd, 1H, J = 8.2, 8.2 Hz), 7.27 (dd, 1H, J = 8.2, 8.2 Hz), 7.42 (d, 1H, J = 8.2 Hz), 7.49 (d, 1H, J = 8.2 Hz); ¹³C {¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 18.0, 22.5, 24.1, 31.8, 110.9, 119.5, 122.3, 123.9, 124.4, 129.0, 146.9, 155.5; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₃H₁₆OS⁺⁺ 220.0922; Found 220.0923.

2-(Benzylthio)-3-butylbenzo[*b*]furan (**3r**)

Colorless oil; TLC $R_f 0.60$ (*n*-hexane/CH₂Cl₂ = 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.85$ (t, 3H, J = 7.3 Hz), 1.15–1.29 (m, 2H), 1.31–1.43 (m, 2H), 2.47 (t, 2H, J = 7.6 Hz), 4.06 (s, 2H), 7.10–7.17 (m, 2H), 7.17–7.25 (m, 4H), 7.26–7.31 (AA'BB'C, 1H), 7.40–7.50 (AA'BB'C, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.8$, 22.5, 24.0, 31.5, 39.6, 111.0, 119.7, 122.2, 124.7, 126.7, 127.2, 128.4, 128.8 (two signals overlapped), 137.6, 144.8, 155.7; HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₉H₂₀OS⁺ 296.1235; Found 296.1235.

3-Butyl-2-((6-chlorohexyl)thio)benzo[*b*]furan (3s)

CI

Colorless oil; TLC R_f 0.66 (*n*-hexane/CH₂Cl₂ = 3/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.94 (t, 3H, J = 7.4 Hz), 1.32–1.50 (m, 6H), 1.57–1.70 (m, 4H), 1.70–1.85 (m, 2H), 2.75 (t, 2H, J = 7.6 Hz), 2.87 (t, 2H, J = 7.3 Hz), 3.51 (t, 2H, J = 6.7 Hz), 7.21 (ddd, 1H, J = 7.6, 7.6, 1.0 Hz), 7.25–7.30 (m, 1H), 7.40–7.44 (m, 1H), 7.48–7.52 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.9, 22.5, 24.3, 26.4, 27.7, 29.8, 31.8, 32.4, 35.0, 44.9, 111.0, 119.5, 122.3, 124.5, 125.3, 129.0, 145.9, 155.6; HRMS (ESI) *m*/*z*: [M + K]⁺ Calcd for C₁₈H₂₅³⁵ClKOS⁺ 363.0952; Found 363.0952.

3-Butyl-2-(ethylsulfinyl)benzo[b]furan (7)

Colorless oil; TLC $R_f 0.22$ (*n*-hexane/EtOAc= 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.25 (t, 3H, J = 7.5 Hz), 1.34–1.48 (m, 2H), 1.61–1.80 (m, 2H), 2.90 (t, 2H, J = 7.6 Hz), 3.26–3.46 (m, 2H), 7.31 (dd, 1H, J = 8.3, 8.3 Hz), 7.43 (dd, 1H, J = 8.3, 8.3 Hz), 7.54 (d, 1H, J = 8.3 Hz), 7.63 (d, 1H, J = 8.3 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 7.5, 13.8, 22.5, 23.3, 32.2, 45.7, 112.3, 121.1, 123.3, 127.3, 127.5, 128.8, 147.9, 155.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₈NaO₂S⁺ 273.0925; Found 273.0926.

3-Butyl-2-(ethylsulfonyl)benzo[b]furan (8)

Colorless oil; TLC $R_f 0.63$ (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.95$ (t, 3H, J = 7.4 Hz), 1.35 (t, 3H, J = 7.5 Hz), 1.39–1.50 (m, 2H), 1.65–1.78 (m, 2H), 3.06 (t, 2H, J = 7.8 Hz), 3.20 (q, 2H, J = 7.5 Hz), 7.35 (dd, 1H, J = 8.0, 8.0 Hz), 7.49 (dd, 1H, J = 8.0, 8.0 Hz), 7.54 (d, 1H, J = 8.0 Hz), 7.69 (d, 1H, J = 8.0 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 7.1$, 13.9, 22.7, 23.1, 32.5, 49.9, 112.4, 121.7, 123.7, 127.5, 128.2, 130.1, 142.9, 154.7; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₈NaO₃S⁺ 289.0874; Found 289.0874.

3-Butyl-2-(2-(ethylthio)-3-methoxyphenoxy)benzo[b]furan (12)

Colorless oil; TLC $R_f 0.65$ (*n*-hexane/CH₂Cl₂ = 1/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.88$ (t, 3H, J = 7.4 Hz), 1.25 (t, 3H, J = 7.4 Hz), 1.30–1.42 (m, 2H), 1.58–1.69 (m, 2H), 2.59 (t, 2H, J = 7.6 Hz), 2.96 (q, 2H, J = 7.4 Hz), 3.93 (s, 3H), 6.48 (dd, 1H, J = 8.3, 1.0 Hz), 6.69 (dd, 1H, J = 8.3, 1.0 Hz), 7.17 (dd, 1H, J = 8.3, 8.3 Hz), 7.20–7.26 (m, 2H), 7.30–7.37 (m, 1H), 7.45–7.53 (m, 1H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.8, 14.9, 21.9, 22.5, 28.4, 31.0, 56.3, 100.8, 106.3, 108.4, 110.8, 111.9, 119.2, 122.6, 123.1, 129.3, 129.6, 149.3, 153.5, 158.6, 161.3; HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₂₄O₃S⁺⁺ 356.1446; Found 356.1448.

The regiochemistry of 12 was determined by the HMBC and the NOESY experiments.

Hex-1-yn-1-yl 4-tolyl sulfide

Colorless oil; TLC $R_f 0.43$ (*n*-hexane); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.94$ (t, 3H, J = 7.2 Hz), 1.40–1.52 (m, 2H), 1.53–1.63 (m, 2H), 2.32 (s, 3H), 2.44 (q, 2H, J = 7.0 Hz), 7.10–7.17 (AA'BB', 2H), 7.27–7.34 (AA'BB', 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 13.6, 20.0, 20.9, 22.0, 30.7, 65.0, 99.3, 126.0, 129.8, 130.0, 136.0; HRMS (EI) m/z: [M]⁺ Calcd for C₁₃H₁₆S⁺⁺ 204.0973; Found 204.0973.

4-Bromophenyl hex-1-yn-1-yl sulfide

n-Bu

Colorless oil; TLC $R_f 0.51$ (*n*-hexane); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.94$ (t, 3H, J = 7.2 Hz), 1.39–1.52 (m, 2H), 1.53–1.64 (m, 2H), 2.45 (q, 2H, J = 7.1 Hz), 7.24–7.30 (AA'BB', 2H), 7.40–7.46 (AA'BB', 2H); ¹³C {¹H} NMR (CDCl₃, 101 MHz): $\delta 13.6$, 20.0, 22.0, 30.6, 63.8, 100.8, 119.7, 127.2, 132.0, 133.1; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₂H₁₃⁷⁹BrS⁺⁺ 267.9921; Found 267.9921.

6-Chlorohexyl hex-1-yn-1-yl sulfide

Colorless oil; TLC $R_f 0.23$ (*n*-hexane); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.91$ (t, 3H, J = 7.2 Hz), 1.34–1.54 (m, 8H), 1.67–1.87 (m, 4H), 2.30 (t, 2H, J = 7.9 Hz), 2.66 (t, 2H, J = 7.2 Hz), 3.54 (t, 2H, J = 6.7 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.6$, 19.8, 21.9, 26.4, 27.4, 28.9, 30.8, 32.4, 35.2, 45.0, 68.0, 94.4; HRMS (EI) *m/z*: [M]⁻⁺ Calcd for C₁₂H₂₁³⁵ClS⁻⁺ 232.1053; Found 232.1050.

(4-(Ethylsulfinyl)but-3-yn-1-yl)benzene (2b)

Colorless oil; TLC $R_f 0.19$ (CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.35$ (t, 3H, J = 7.4 Hz), 2.73 (t, 2H, J = 7.4 Hz), 2.83–3.10 (m, 4H), 7.15–7.27 (m, 3H), 7.27–7.35 (AA'BB'C, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 6.3$, 21.7, 33.8, 49.9, 77.4, 104.1, 126.6, 128.3, 128.5, 139.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄NaOS⁺ 229.0663; Found 229.0664.

4-(Ethylsulfinyl)but-3-yn-1-yl 4-methylbenzoate (2c)

Colorless oil; TLC $R_f 0.14$ (CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.39$ (t, 3H, J = 7.4 Hz), 2.40 (s, 3H), 2.86–3.14 (m, 4H), 4.44 (t, 2H, J = 6.6 Hz), 7.18–7.28 (AA'BB', 2H), 7.86–7.96 (AA'BB', 2H); ¹³C {¹H} NMR (CDCl₃, 101 MHz): $\delta 6.3$, 20.3, 21.6, 49.9, 61.2, 78.4, 100.4, 126.7, 129.1, 129.6, 144.0, 166.1; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₄H₁₆NaO₃S⁺ 287.0718; Found 287.0718.

(2-((3-(Ethylsulfinyl)prop-2-yn-1-yl)oxy)ethyl)benzene (2d)

Colorless oil; TLC R_f 0.22 (CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): δ 1.44 (t, 3H, J = 7.4 Hz), 2.91 (t, 2H, J = 6.9 Hz), 2.95–3.18 (m, 2H), 3.77 (t, 2H, J = 6.9 Hz), 4.35 (s, 2H), 7.18–7.25 (m, 3H), 7.27–7.35 (AA'BB'C, 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): δ 6.5, 36.0, 49.8, 58.3, 71.4, 82.6, 99.3, 126.4, 128.4, 128.8, 138.3; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaO₂S⁺ 259.0769; Found 259.0769.

1-((Ethylsulfinyl)ethynyl)-4-methylbenzene (2e)

Me

Yellow oil; TLC $R_f 0.38$ (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.50$ (t, 3H, J = 7.4 Hz), 2.38 (s, 3H), 3.04–3.26 (m, 2H), 7.15–7.22 (AA'BB', 2H), 7.39–7.46 (AA'BB', 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 6.6$, 21.7, 50.0, 84.1, 102.6, 116.7, 129.4, 132.2, 141.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₁H₁₂NaOS⁺ 215.0507; Found 215.0506.

1-Chloro-4-((ethylsulfinyl)ethynyl)benzene (2f)

CI

Yellow oil; TLC $R_f 0.33$ (CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.50$ (t, 3H, J = 7.4 Hz), 3.05–3.27 (m, 2H), 7.31–7.40 (AA'BB', 2H), 7.43–7.49 (AA'BB', 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 6.6$, 50.0, 85.8, 100.8, 118.2, 129.1, 133.4, 136.9; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₀H₉³⁵ClNaOS⁺ 234.9960; Found 234.9962.

1-(Hex-1-yn-1-ylsulfinyl)-4-methylbenzene (2g)

Colorless oil; TLC $R_f 0.28$ (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 7.3 Hz), 1.32–1.45 (m, 2H), 1.48–1.60 (m, 2H), 2.37–2.47 (m, 5H), 7.28–7.37 (AA'BB', 2H), 7.62–7.72 (AA'BB', 2H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.4$, 19.4, 21.4, 21.8, 29.5, 78.1, 105.9, 125.1, 130.1, 141.2, 142.2; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaOS⁺ 243.0820; Found 243.0821.

1-Bromo-4-(hex-1-yn-1-ylsulfinyl)benzene (2h)

Colorless oil; TLC $R_f 0.20$ (*n*-hexane/EtOAc = 5/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 7.3 Hz), 1.31–1.44 (m, 2H), 1.48–1.60 (m, 2H), 2.41 (t, 2H, J = 7.1 Hz), 7.60–7.70 (m, 4H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.4$, 19.4, 21.9, 29.4, 77.7, 106.7, 126.0, 126.4, 132.6, 143.4; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₂H₁₃⁷⁹BrNaOS⁺ 306.9768; Found 306.9769.

((Hex-1-yn-1-ylsulfinyl)methyl)benzene (2j)

n-Bu∕

Colorless oil; TLC $R_f 0.31$ (*n*-hexane/EtOAc = 2/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.90$ (t, 3H, J = 7.3 Hz), 1.30–1.42 (m, 2H), 1.45–1.56 (m, 2H), 2.38 (t, 2H, J = 7.0 Hz), 4.26 (s, 2H), 7.28–7.43 (m, 5H); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.4$, 19.3, 21.8, 29.5, 62.8, 76.7, 106.9, 128.6 (two signals overlapped), 129.2, 130.4; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₁₆NaOS⁺ 243.0820; Found 243.0820.

1-((6-Chlorohexyl)sulfinyl)hex-1-yne (2k)

Colorless oil; TLC $R_f 0.32$ (*n*-hexane/EtOAc = 2/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.91$ (t, 3H, J = 7.4 Hz), 1.35–1.62 (m, 8H), 1.70–1.98 (m, 4H), 2.43 (t, 2H, J = 7.1 Hz), 3.01 (t, 2H, J = 7.6 Hz), 3.53 (t, 2H, J = 6.6 Hz); ¹³C{¹H} NMR (CDCl₃, 101 MHz): $\delta 13.4$, 19.3, 21.9, 22.1, 26.4, 27.8, 29.6, 32.1, 44.8, 56.1, 76.8, 105.6; HRMS (ESI) *m/z*: [M + Na]⁺ Calcd for C₁₂H₂₁³⁵ClNaOS⁺ 271.0899; Found 271.0899.

References for Supporting Information

- S1 Z. Xu, H. Chen, Z. Wang, A. Ying, L. Zhang, J. Am. Chem. Soc. 2016, 138, 5515.
- S2 D.-Q. Chen, C.-H. Guo, H.-R. Zhang, D.-P. Jin, X.-S. Li, P. Gao, X.-X. Wu, X.-Y. Liu Y.-M. Lianga, Green Chem. 2016, 18, 4176.
- S3 K. Kanemoto, S. Yoshida, T. Hosoya, Org. Lett. 2019, 21, 3172.
- S4 T. Matsuzawa, T. Hosoya, S. Yoshida, Chem. Sci. 2020, 11, 9691.
- S5 C. Medena, C. Aubert, E. Derat, L. Fensterbank, G. Gontard, O.Khaled, C. Ollivier, N. Vanthuyne, M. Petit, M. Barbazanges, *ChemCatChem* 2021, 13, 4543.
- S6 S. Yoshida, K. Shimomori, T. Nonaka, T. Hosoya, Chem. Lett. 2015, 44, 1324.
- S7 J. Doroszuk, M. Musiejuk, Ł. Ponikiewski, D. Witt, Eur. J. Org. Chem. 2018, 6333.
- S8 M. J. Barrett, G. F. Khan, P. W. Davies, R. S. Grainger, Chem. Commun. 2017, 53, 5733.
- S9 J. Kikuchi, K. Takano, Y. Ota, S. Umemiya, M. Terada, Chem. Eur J. 2020, 26, 11124.
- S10 W. Zheng, F. Zheng, Y. Hong, L. Hu, Heteroat. Chem. 2012, 23, 105.
- S11 W. E. Truce, M. J. Lusch, J. Org. Chem. 1978, 43, 2252.
- S12 S. Meng, Y. Wang, J. Liu, J. Zheng, X. Qian, Q. Wang, Org. Lett. 2022, 24, 757.

¹H and ¹³C NMR Spectra of Compounds

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)benzo[b]furan (3a) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(ethylthio)-3-phenethylbenzo[b]furan (**3b**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(2-(ethylthio)benzo[*b*]furan-3-yl)ethyl 4-methylbenzoate (**3c**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(ethylthio)-3-(phenethoxymethyl)benzo[*b*]furan (**3d**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(ethylthio)-3-(4-tolyl)benzo[b]furan (3e) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-(4-chlorophenyl)-2-(ethylthio)benzo[*b*]furan (**3f**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(4-tolylthio)benzo[b]furan (3g) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-((4-bromophenyl)thio)-3-butylbenzo[*b*]furan (**3h**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-5-methylbenzo[*b*]furan (**3i**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-5-methoxybenzo[*b*]furan (**3j**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 5-bromo-3-butyl-2-(ethylthio)benzo[*b*]furan (**3k**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-5-chloro-2-(ethylthio)benzo[*b*]furan (**3**I) (CDCl₃)

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of methyl 3-butyl-2-(ethylthio)benzo[b]furan-5-carboxylate (**3m**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(3-butyl-2-(ethylthio)benzo[*b*]furan-5-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (**3n**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-7-(trimethylsilyl)benzo[*b*]furan-6-yl trifluoromethanesulfonate (**30**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)naphtho[1,2-*b*]furan (**3p**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-6-methylbenzo[*b*]furan (**4a**) and 3-butyl-2-(ethylthio)-4-methylbenzo[*b*]furan (**5a**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-6,7-dihydro-5*H*-indeno[5,6*b*]furan (**4b**) and 1-butyl-2-(ethylthio)-7,8-dihydro-6*H*-indeno[5,4-*b*]furan (**5b**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylthio)-5,6-dimethoxybenzo[*b*]furan (4c) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 1-butyl-2-(ethylthio)naphtho[2,1-b]furan (5d) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of ((1-butyl-2-(ethylthio)naphtho[2,1-*b*]furan-8-yl)oxy)triisopropylsilane (**5e**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-ethylthio-3-butylbenzofuro[6,5-*b*]benzofuran (4f) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-ethylthio-3-butylbenzo[b]furo[2,3-g]benzofuran (5f)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(methylthio)benzo[*b*]furan (**3**q) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(benzylthio)-3-butylbenzo[*b*]furan (**3r**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-((6-chlorohexyl)thio)benzo[*b*]furan (**3s**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylsulfinyl)benzo[b]furan (7) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-butyl-2-(ethylsulfonyl)benzo[b]furan (8) (CDCl₃)

 1H NMR (400 MHz) and ^{13}C NMR (101 MHz) spectra of 3-butyl-2-(2-(ethylthio)-3-methoxyphenoxy)benzo[b]furan (12) (CDCl_3)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of hex-1-yn-1-yl 4-tolyl sulfide (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-bromophenyl hex-1-yn-1-yl sulfide (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 6-chlorohexyl hex-1-yn-1-yl sulfide (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of (4-(ethylsulfinyl)but-3-yn-1-yl)benzene (2b) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-(ethylsulfinyl)but-3-yn-1-yl 4-methylbenzoate.(**2c**) (CDCl₃)

1H NMR (400 MHz) and ^{13}C NMR (101 MHz) spectra of (2-((3-(ethylsulfinyl)prop-2-yn-1-yl)oxy)ethyl)benzene (2d) (CDCl_3)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 1-chloro-4-((ethylsulfinyl)ethynyl)benzene (**2f**) (CDCl₃)

 $^{1}\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of 1-(hex-1-yn-1-ylsulfinyl)-4-methylbenzene (2g) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 1-bromo-4-(hex-1-yn-1-ylsulfinyl)benzene (**2h**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of ((hex-1-yn-1-ylsulfinyl)methyl)benzene (2j) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 1-((6-chlorohexyl)sulfinyl)hex-1-yne (2k) (CDCl₃)