Supplemental information

The turnover frequency (TOF) calculation

TOF is calculated according to the following formula:

$$TOF = \frac{n_1 \alpha}{n_2 t}$$

Where n_1 is the mole of substrate (0.5mmol), α is the conversion rate of substrate

(99%), n_2 is the mole of the metal (0.08mmol %), t is the reaction time (1h).

TOF=618.75 h⁻¹

The turnover number (TON) calculation

TON is calculated according to the following formula:

$$TOF = \frac{TON}{t}$$

TON=618.75

Sample	Pd (mmol %)	
fresh	0.08	
reused	0.07	

Table. S 1 The Pd content of the fresh and reused $Pd@UiO-66-NH_2@mSiO_2$ determined by ICP-OES (5 mg catalyst (mmol % of Pd))

Sample	BET surface area	Pore volume	Average pore size
	(m^2g^{-1})	$(cm^{3}g^{-1})$	(nm)
UiO-66-NH ₂	1107.3	0.6	2.2
Pd@UiO-66-NH ₂	1002.6	0.5	2.6
Pd@UiO-66-NH ₂ @mSiO ₂	920.3	0.7	3.2

Table. S 2 BET surface area and pore structure characterization parameters of catalyst

The GC-MS spectra of substrates

Figure. S 2 The GC-MS spectrum of 2-methylbenzaldehyde

Figure. S 3 The GC-MS spectrum of 3-methylbenzaldehyde

Figure. S 4 The GC-MS spectrum of 3-hydroxybenzaldehyde

Figure. S 5 The GC-MS spectrum of p-Toluidine

Figure. S 7 The GC-MS spectrum of p-hydroxybenzaldehyde