Supplementary Information

Electrical transport properties of TiO₂/MAPbI₃ and SnO₂/MAPbI₃ heterojunction interfaces under high pressure

Yuqiang Li ^{a,d,*}, Yuhong Li ^{a,d}, Qiang Zhang ^b, Xiaofeng Liu ^c, Yuanjing Li ^{a,d}, Ningru Xiao ^e, Pingfan Ning ^d, Jingjing Wang ^{a,d}, Jianxin Zhang ^{a,d}, and Hongwei Liu ^{a,d}

^aTianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China

^bKey Laboratory of Smart Grid of Ministry of Education, School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

^cTianjin San'an Optoelectronics Co., LTD., Tianjin 300384, China

^dEngineering Research Center of High Power Solid State Lighting Application System of Ministry of Education, Tiangong University, Tianjin 300387, China ^eSchool of Physical Science and Technology, Tiangong University, Tianjin 300387, China

*Corresponding authors:

Email: liyuqiang@tiangong.edu.cn

Supplementary Tables

(a)	X	У	Z	(b)	X	У	Z
Ti ₁	-0.001	-0.035	-0.002	Sn ₁	-0.016	-0.002	-0.002
Ti ₂	0.000	-0.034	0.038	Sn ₂	-0.016	-0.001	0.037
Ti ₃	0.000	-0.034	0.079	Sn ₃	-0.016	-0.001	0.077
Ti ₄	0.000	0.034	0.119	Sn ₄	-0.017	-0.001	0.117
Ti ₅	0.000	-0.032	0.159	Sn ₅	-0.018	-0.001	0.158
Ti ₆	0.001	-0.028	0.200	Sn ₆	-0.015	-0.001	0.197
Ti ₇	0.500	0.466	-0.001	Sn ₇	0.484	0.499	-0.003
Ti ₈	0.500	0.466	0.038	Sn ₈	0.484	0.499	0.037
Ti9	0.500	0.466	0.078	Sn ₉	0.483	0.499	0.077
Ti ₁₀	0.500	0.466	0.119	Sn ₁₀	0.482	0.499	0.117
Ti ₁₁	0.500	0.463	0.159	Sn ₁₁	0.481	0.499	0.157
Ti ₁₂	0.500	0.447	0.198	Sn ₁₂	0.475	0.500	0.196
Ti ₁₃	0.000	0.466	0.016	Sn ₁₃	-0.016	0.499	0.014
Ti ₁₄	0.000	0.466	0.058	Sn ₁₄	-0.016	0.499	0.056
Ti ₁₅	0.000	0.466	0.098	Sn ₁₅	-0.017	0.499	0.097
Ti ₁₆	0.000	0.465	0.140	Sn ₁₆	-0.019	0.499	0.138
Ti ₁₇	0.000	0.476	0.182	Sn 17	-0.022	0.499	0.180
Ti ₁₈	0.501	-0.034	0.016	Sn ₁₈	0.484	-0.001	0.014
Ti ₁₉	0.501	-0.034	0.059	Sn ₁₉	0.484	-0.001	0.056
Ti ₂₀	0.501	-0.034	0.099	Sn ₂₀	0.483	-0.001	0.097
Ti ₂₁	0.501	-0.035	0.140	Sn ₂₁	0.483	-0.001	0.138

Table S1. Atomic coordinate of $\sqrt{2} \times \sqrt{2}$ supercell of (a) TiO₂/MAPbI₃ and (b)SnO₂/MAPbI₃ heterojunction interface by VASP.

Ti ₂₂	0.501	-0.042	0.181	Sn ₂₂	0.483	0.000	0.180
O 1	0.000	0.263	-0.005	O 1	-0.015	0.295	-0.007
O ₂	0.000	0.274	0.037	O ₂	-0.016	0.307	0.035
O 3	0.000	0.274	0.078	O 3	-0.016	0.307	0.077
O 4	0.000	0.274	0.119	O 4	-0.017	0.307	0.117
O 5	0.000	0.276	0.160	O 5	-0.020	0.307	0.158
O 6	0.001	0.274	0.201	O ₆	-0.022	0.299	0.200
O 7	0.500	0.763	-0.005	O 7	0.483	0.795	-0.007
O 8	0.499	0.774	0.037	O 8	0.483	0.807	0.035
O 9	0.499	0.774	0.078	O 9	0.483	0.807	0.077
O ₁₀	0.499	0.774	0.119	O ₁₀	0.483	0.807	0.117
O 11	0.499	0.771	0.160	O 11	0.483	0.808	0.159
O 12	0.499	0.743	0.203	O 12	0.481	0.794	0.201
O 13	-0.001	0.670	-0.005	O 13	-0.015	0.703	-0.007
O 14	0.000	0.658	0.037	O 14	-0.016	0.691	0.035
O 15	0.000	0.658	0.078	O 15	-0.016	0.691	0.077
O 16	0.000	0.658	0.119	O 16	-0.017	0.691	0.117
O 17	0.000	0.660	0.160	O 17	-0.020	0.691	0.158
O ₁₈	0.000	0.671	0.202	O ₁₈	-0.022	0.699	0.200
O 19	0.500	0.170	-0.005	O 19	0.485	0.203	-0.007
O ₂₀	0.500	0.158	0.037	O ₂₀	0.484	0.190	0.035
O ₂₁	0.500	0.158	0.078	O ₂₁	0.484	0.191	0.077
O 22	0.500	0.158	0.119	O 22	0.482	0.191	0.117
O 23	0.500	0.155	0.160	O 23	0.482	0.191	0.158
O 24	0.500	0.153	0.203	O 24	0.481	0.206	0.201
O 25	0.696	0.467	0.018	O 25	0.680	0.499	0.016

O ₂₆	0.693	0.466	0.058	O ₂₆	0.677	0.499	0.057
O 27	0.692	0.466	0.099	O 27	0.676	0.499	0.097
O 28	0.693	0.465	0.139	O 28	0.675	0.499	0.137
O 29	0.695	0.464	0.179	O 29	0.674	0.499	0.177
O ₃₀	0.196	-0.033	0.018	O 30	0.181	-0.001	0.016
O ₃₁	0.193	-0.034	0.058	O ₃₁	0.177	-0.001	0.057
O ₃₂	0.192	-0.034	0.099	O ₃₂	0.176	-0.001	0.097
O ₃₃	0.193	-0.034	0.139	O ₃₃	0.175	-0.001	0.138
O 34	0.196	-0.038	0.180	O 34	0.179	0.000	0.178
O 35	0.303	0.466	0.018	O 35	0.288	0.499	0.016
O 36	0.306	0.466	0.058	O ₃₆	0.291	0.499	0.057
O 37	0.306	0.465	0.098	O 37	0.290	0.499	0.097
O 38	0.306	0.465	0.139	O 38	0.288	0.499	0.137
O 39	0.306	0.464	0.179	O 39	0.282	0.499	0.177
O 40	0.802	-0.034	0.018	O 40	0.787	-0.001	0.016
O 41	0.807	-0.034	0.058	O 41	0.791	-0.001	0.057
O 42	0.807	-0.034	0.099	O 42	0.791	-0.001	0.097
O 43	0.807	-0.034	0.137	O 43	0.791	-0.001	0.138
O 44	0.804	-0.037	0.180	O 44	0.787	0.000	0.178
Pb ₁	0.997	0.018	0.275	Pb ₁	0.054	-0.006	0.269
Pb ₂	0.003	0.992	0.350	Pb ₂	0.023	-0.012	0.346
Pb ₃	-0.021	0.971	0.427	Pb ₃	0.012	-0.014	0.425
I ₁	0.473	0.038	0.276	\mathbf{I}_1	0.568	-0.011	0.270
I_2	0.475	0.959	0.350	I_2	0.530	-0.011	0.347
I_3	0.467	0.972	0.421	I ₃	0.515	-0.020	0.423
I4	0.950	0.539	0.275	I ₄	0.052	0.491	0.273

I ₅	0.951	0.499	0.349	I5	0.002	0.489	0.349
I_6	0.949	0.481	0.424	\mathbf{I}_6	-0.022	0.487	0.423
I_7	0.002	0.042	0.234	I ₇	0.147	-0.007	0.233
I_8	-0.046	0.057	0.312	I ₈	0.066	-0.010	0.310
I9	-0.041	0.013	0.388	I9	0.051	-0.011	0.387
\mathbf{I}_{10}	-0.016	0.920	0.465	I ₁₀	0.068	-0.012	0.464
C ₁	0.460	0.587	0.241	C ₁	0.686	0.488	0.234
C ₂	0.439	0.487	0.312	C ₂	0.553	0.489	0.307
C ₃	0.441	0.454	0.386	C ₃	0.551	0.486	0.382
C4	0.468	0.437	0.458	C ₄	0.527	0.485	0.458
N_1	0.503	0.793	0.234	N ₁	0.526	0.489	0.247
N_2	0.645	0.589	0.312	N_2	0.465	0.489	0.324
N_3	0.650	0.548	0.386	N 3	0.442	0.489	0.398
N_4	0.480	0.665	0.456	N4	0.297	0.487	0.457
\mathbf{H}_{1}	0.644	0.849	0.238	\mathbf{H}_{1}	0.379	0.490	0.242
\mathbf{H}_2	0.736	0.544	0.321	\mathbf{H}_{2}	0.305	0.488	0.324
\mathbf{H}_{3}	0.733	0.501	0.396	\mathbf{H}_{3}	0.284	0.483	0.396
\mathbf{H}_4	0.614	0.725	0.461	\mathbf{H}_4	0.243	0.488	0.446
\mathbf{H}_{5}	0.391	0.897	0.238	H_5	0.541	0.617	0.254
\mathbf{H}_{6}	0.635	0.748	0.312	\mathbf{H}_{6}	0.509	0.618	0.330
\mathbf{H}_{7}	0.645	0.708	0.387	\mathbf{H}_{7}	0.478	0.613	0.405
\mathbf{H}_{8}	0.352	0.737	0.461	\mathbf{H}_{8}	0.235	0.620	0.463
H9	0.504	0.787	0.221	H9	0.538	0.358	0.254
\mathbf{H}_{10}	0.725	0.555	0.301	\mathbf{H}_{10}	0.509	0.359	0.330
\mathbf{H}_{11}	0.736	0.512	0.376	\mathbf{H}_{11}	0.479	0.354	0.404
H_{12}	0.481	0.715	0.444	H_{12}	0.233	0.355	0.463

\mathbf{H}_{15}	0.361	0.510	0.375	H_{15}	0.505	0.625	0.375
\mathbf{H}_{16}	0.326	0.384	0.452	\mathbf{H}_{16}	0.586	0.624	0.452
\mathbf{H}_{17}	0.453	0.597	0.255	\mathbf{H}_{17}	0.664	0.350	0.226
\mathbf{H}_{18}	0.363	0.528	0.324	\mathbf{H}_{18}	0.501	0.350	0.301
H19	0.356	0.497	0.397	H19	0.507	0.348	0.375
\mathbf{H}_{20}	0.466	0.394	0.471	\mathbf{H}_{20}	0.583	0.348	0.452
H_{21}	0.583	0.480	0.238	H_{21}	0.838	0.482	0.239
\mathbf{H}_{22}	0.461	0.321	0.311	H_{22}	0.721	0.489	0.308
H ₂₃	0.458	0.286	0.385	H ₂₃	0.717	0.487	0.384
H24	0.603	0.375	0.455	H24	0.573	0.482	0.469

Table S2. Atomic coordinate of $\sqrt{2} \times \sqrt{2}$ supercell of (a) TiO₂/MAPbI₃ and (b)SnO₂/MAPbI₃ heterojunction interfaces by MS (Materials Studio).

(a)	X	У	Z	(b)	X	У	Z	
Ti ₁	-0.001	-0.035	-0.002	Sn ₁	-0.015	-0.002	-0.002	
Ti ₂	0.000	-0.034	0.038	Sn ₂	-0.015	-0.001	0.036	
Ti ₃	0.000	-0.034	0.079	Sn ₃	-0.015	-0.001	0.078	
Ti ₄	0.000	0.034	0.119	Sn ₄	-0.017	-0.001	0.117	
Ti ₅	0.000	-0.032	0.159	Sn ₅	-0.018	-0.001	0.158	
Ti ₆	0.001	-0.028	0.200	Sn ₆	-0.015	-0.001	0.197	
Ti ₇	0.501	0.467	-0.001	Sn ₇	0.484	0.498	-0.003	

Ti ₈	0.501	0.467	0.038	Sn ₈	0.484	0.498	0.037
Ti9	0.501	0.467	0.078	Sn ₉	0.483	0.498	0.077
Ti ₁₀	0.500	0.466	0.119	Sn ₁₀	0.482	0.499	0.117
Ti ₁₁	0.500	0.463	0.159	Sn ₁₁	0.481	0.499	0.157
Ti ₁₂	0.500	0.447	0.198	Sn ₁₂	0.475	0.500	0.196
Ti ₁₃	0.000	0.466	0.016	Sn ₁₃	-0.016	0.499	0.014
Ti ₁₄	0.000	0.466	0.058	Sn ₁₄	-0.016	0.499	0.056
Ti ₁₅	0.000	0.466	0.098	Sn ₁₅	-0.017	0.499	0.097
Ti ₁₆	0.000	0.465	0.140	Sn ₁₆	-0.019	0.499	0.138
Ti ₁₇	0.000	0.476	0.182	Sn ₁₇	-0.022	0.499	0.180
Ti ₁₈	0.500	-0.034	0.016	Sn ₁₈	0.485	-0.001	0.014
Ti ₁₉	0.500	-0.034	0.059	Sn ₁₉	0.485	-0.001	0.056
Ti ₂₀	0.500	-0.034	0.099	Sn ₂₀	0.483	-0.001	0.097
Ti ₂₁	0.500	-0.035	0.140	Sn ₂₁	0.483	-0.001	0.138
Ti ₂₂	0.500	-0.042	0.181	Sn ₂₂	0.483	0.000	0.180
O 1	0.000	0.263	-0.005	O 1	-0.015	0.295	-0.007
O ₂	0.000	0.274	0.037	O ₂	-0.016	0.307	0.035
O 3	0.000	0.274	0.078	O 3	-0.016	0.307	0.077
O 4	0.000	0.274	0.119	O 4	-0.017	0.307	0.117
O 5	0.000	0.276	0.160	O 5	-0.020	0.307	0.158
O 6	0.001	0.274	0.201	O 6	-0.022	0.299	0.200
O 7	0.500	0.763	-0.005	O 7	0.483	0.795	-0.007
O_8	0.499	0.774	0.037	O 8	0.483	0.807	0.035
O9	0.499	0.774	0.078	09	0.483	0.807	0.077
O ₁₀	0.499	0.774	0.119	O 10	0.483	0.807	0.117
O ₁₁	0.499	0.771	0.160	O ₁₁	0.483	0.808	0.159

O ₁₂	0.499	0.743	0.203	O 12	0.483	0.794	0.201
O 13	-0.001	0.670	-0.005	O 13	-0.015	0.703	-0.007
O 14	0.000	0.658	0.037	O 14	-0.016	0.691	0.035
O 15	0.000	0.658	0.078	O 15	-0.016	0.691	0.077
O 16	0.000	0.658	0.119	O 16	-0.017	0.691	0.117
O 17	0.000	0.660	0.160	O 17	-0.020	0.691	0.158
O ₁₈	0.000	0.671	0.202	O ₁₈	-0.022	0.699	0.200
O 19	0.500	0.170	-0.005	O 19	0.485	0.203	-0.007
O ₂₀	0.500	0.158	0.037	O ₂₀	0.484	0.190	0.035
O ₂₁	0.500	0.158	0.078	O ₂₁	0.484	0.191	0.077
O ₂₂	0.500	0.158	0.119	O ₂₂	0.482	0.191	0.117
O ₂₃	0.500	0.155	0.160	O ₂₃	0.482	0.191	0.158
O 24	0.500	0.153	0.203	O 24	0.481	0.206	0.201
O 25	0.696	0.467	0.018	O 25	0.680	0.498	0.016
O ₂₆	0.693	0.466	0.058	O 26	0.677	0.498	0.057
O 27	0.692	0.466	0.099	O 27	0.676	0.498	0.097
O 28	0.693	0.465	0.139	O 28	0.675	0.498	0.137
O 29	0.695	0.464	0.179	O 29	0.675	0.498	0.177
O ₃₀	0.196	-0.033	0.018	O ₃₀	0.181	-0.001	0.016
O ₃₁	0.193	-0.034	0.058	O ₃₁	0.177	-0.001	0.057
O ₃₂	0.192	-0.034	0.099	O ₃₂	0.176	-0.001	0.097
O ₃₃	0.193	-0.034	0.139	O ₃₃	0.175	-0.001	0.138
O 34	0.196	-0.038	0.180	O 34	0.179	0.000	0.178
O 35	0.303	0.466	0.018	O 35	0.288	0.498	0.016
O36	0.306	0.466	0.058	O 36	0.291	0.498	0.057
O 37	0.306	0.466	0.098	O 37	0.290	0.498	0.097

O 38	0.306	0.466	0.139	O 38	0.288	0.498	0.137
O 39	0.306	0.466	0.179	O 39	0.282	0.498	0.177
O 40	0.802	-0.034	0.018	O 40	0.787	-0.001	0.016
O 41	0.807	-0.034	0.058	O 41	0.791	-0.001	0.057
O 42	0.807	-0.034	0.099	O 42	0.791	-0.001	0.097
O 43	0.807	-0.034	0.137	O 43	0.791	-0.001	0.138
O 44	0.804	-0.037	0.180	O 44	0.787	0.000	0.178
Pb ₁	0.997	0.018	0.275	Pb ₁	0.054	-0.006	0.269
Pb ₂	0.003	0.992	0.350	Pb ₂	0.023	-0.012	0.346
Pb ₃	-0.021	0.971	0.427	Pb ₃	0.012	-0.014	0.425
\mathbf{I}_1	0.473	0.038	0.276	\mathbf{I}_1	0.568	-0.011	0.270
I_2	0.475	0.959	0.350	I_2	0.530	-0.011	0.347
I ₃	0.467	0.972	0.421	I ₃	0.515	-0.020	0.423
I4	0.950	0.539	0.275	I4	0.052	0.491	0.273
I 5	0.951	0.499	0.349	I ₅	0.002	0.489	0.349
I ₆	0.949	0.481	0.424	I ₆	-0.022	0.487	0.423
I_7	0.002	0.042	0.234	I ₇	0.147	-0.007	0.233
I 8	-0.046	0.057	0.312	I ₈	0.066	-0.010	0.310
I9	-0.041	0.013	0.388	I9	0.051	-0.011	0.387
I ₁₀	-0.016	0.920	0.465	I ₁₀	0.068	-0.012	0.464
C ₁	0.460	0.587	0.241	C ₁	0.686	0.488	0.234
C ₂	0.439	0.487	0.312	C ₂	0.553	0.488	0.307
C ₃	0.441	0.454	0.386	C ₃	0.551	0.486	0.382
C 4	0.467	0.437	0.458	C4	0.527	0.485	0.458
N_1	0.501	0.793	0.234	N_1	0.526	0.488	0.247
N_2	0.645	0.589	0.312	N ₂	0.465	0.488	0.324

N_3	0.650	0.548	0.386	N 3	0.442	0.488	0.398
N_4	0.480	0.665	0.456	N4	0.297	0.488	0.457
\mathbf{H}_{1}	0.644	0.849	0.238	\mathbf{H}_{1}	0.379	0.490	0.242
\mathbf{H}_2	0.736	0.544	0.321	\mathbf{H}_2	0.305	0.488	0.324
\mathbf{H}_{3}	0.733	0.501	0.396	\mathbf{H}_{3}	0.284	0.483	0.396
\mathbf{H}_4	0.614	0.725	0.461	${ m H}_4$	0.243	0.488	0.446
\mathbf{H}_{5}	0.391	0.897	0.238	${ m H}_5$	0.541	0.617	0.254
\mathbf{H}_{6}	0.635	0.748	0.312	\mathbf{H}_{6}	0.509	0.617	0.330
\mathbf{H}_{7}	0.645	0.708	0.387	\mathbf{H}_{7}	0.478	0.613	0.405
$\mathbf{H_8}$	0.352	0.737	0.461	$\mathbf{H_8}$	0.235	0.620	0.463
H9	0.504	0.787	0.221	H9	0.538	0.358	0.254
\mathbf{H}_{10}	0.725	0.555	0.301	H_{10}	0.509	0.359	0.330
H11	0.736	0.512	0.376	H11	0.479	0.354	0.404
H_{12}	0.481	0.715	0.444	H_{12}	0.233	0.355	0.463
H ₁₅	0.360	0.510	0.375	H_{15}	0.505	0.625	0.375
\mathbf{H}_{16}	0.325	0.384	0.452	\mathbf{H}_{16}	0.586	0.624	0.452
\mathbf{H}_{17}	0.455	0.596	0.255	\mathbf{H}_{17}	0.664	0.350	0.226
H_{18}	0.365	0.528	0.324	H_{18}	0.501	0.350	0.301
H19	0.356	0.497	0.397	H19	0.507	0.348	0.375
H_{20}	0.466	0.394	0.471	H ₂₀	0.583	0.349	0.452
H_{21}	0.585	0.480	0.238	H_{21}	0.838	0.480	0.239
H ₂₂	0.461	0.320	0.311	H ₂₂	0.721	0.489	0.308
H ₂₃	0.455	0.285	0.385	H ₂₃	0.717	0.487	0.384
H24	0.600	0.375	0.455	H24	0.572	0.482	0.469

Optimized heterojunction interface models	Atomic bond	Atomic bond length (Å)	Interface binding energy (eV/nm ²⁾	
	Pb-O	2.80	675	
11O ₂ /MAP01 ₃	I-Ti	2.90	-0.73	
$SnO_{2}/MABhI_{2}$	Pb-O	1.78	1.02	
5110 ₂ /1VIAP013	I-Sn	1.89	-1.02	

Table S3. The interface model parameters of SnO₂ (TiO₂)/MAPbI₃ heterojunction.

Table S4. The binding energy of SnO2 (TiO2)/MAPbI3 heterojunction interfacessystem under ambient conditions.

Heterojunction interfaces	E(eV)	Emaphi3(eV)	E _{SnO2 (TiO2)} (eV)	ΔE(eV)	$\Delta E_{unit}(eV/nm^2)$
SnO ₂ /MAPbI ₃	-1044.88	-330.25	-715.52	-0.89	-1.02
TiO ₂ /MAPbI ₃	-976.38	-330.05	-652.20	-5.87	-6.75

Table S5. The interface binding energy of SnO_2 (TiO₂)/MAPbI₃ heterojunction up to 20 GPa.

Pressure (GPa)	Heterojunction interface models	Interface binding energy (eV/nm²)
0 CDa	TiO ₂ /MAPbI ₃	-6.75
0 GPa	SnO ₂ /MAPbI ₃	-1.02
5 CDa	TiO ₂ /MAPbI ₃	-6.61
5 GPa	SnO ₂ /MAPbI ₃	-0.92
10 GPa	TiO ₂ /MAPbI ₃	-6.41
	SnO ₂ /MAPbI ₃	-0.84
15 GPa	TiO ₂ /MAPbI ₃	-6.15
	SnO ₂ /MAPbI ₃	-0.77
20 GPa	TiO ₂ /MAPbI ₃	-5.85
	SnO ₂ /MAPbI ₃	-0.72

Heterojunction interfaces	E _d (eV)	ΔE _d (eV)	Pressure(GPa)
TiO ₂ /MAPbI ₃	0.75	0.70	0
SnO ₂ /MAPbI ₃	1.45	0.70	0
TiO ₂ /MAPbI ₃	0.82	0.94	5
SnO ₂ /MAPbI ₃	1.66	0.84	5
TiO ₂ /MAPbI ₃	0.94	0.00	10
SnO ₂ /MAPbI ₃	1.93	0.99	10
TiO ₂ /MAPbI ₃	1.09	1.25	15
SnO ₂ /MAPbI ₃	2.34	1.23	13
TiO ₂ /MAPbI ₃	1.26	1.62	20
SnO ₂ /MAPbI ₃	2.88	1.02	20

Table S6. The charge transport driving force of SnO2 (TiO2)/MAPbI3 heterojunctioninterfaces up to 20 GPa.

Table S7.Binding energy (BE) of the SnO2/MAPbI3 and TiO2/MAPbI3 interfaces onMA orientation [001] [011] and [111] under ambient conditions.

MA orientation	Interface binding energy (eV/nm²)			
	SnO ₂ /MAPbI ₃		TiO ₂ /MAPbI ₃	
	MAI-termination	PbI₂-termination	MAI-termination	PbI ₂ -termination
[001]	0.84	2.98	0.86	2.36
[011]	0.86	2.84	0.94	2.42
[111]	1.51	2.72	1.22	2.32

Table S8.Binding energy (BE) of the SnO2/MAPbI3 and TiO2/MAPbI3 interfaces on
MA orientation [001] [011] and [111] at 5 GPa.

MA orientation	Interface binding energy (eV/nm²)			
	SnO ₂ /MAPbI ₃		TiO ₂ /MAPbI ₃	
	MAI-termination	PbI ₂ -termination	MAI-termination	PbI ₂ -termination

[001]	0.92	3.12	0.97	3.34
[011]	0.94	3.44	1.02	3.02
[111]	1.71	3.32	1.40	2.94

Table S9.Binding energy (BE) of the SnO2/MAPbI3 and TiO2/MAPbI3 interfaces on
MA orientation [001] [011] and [111] at 10 GPa.

MA orientation	Interface binding energy (eV/nm²)			
	SnO ₂ /MAPbI ₃		TiO ₂ /MAPbI ₃	
	MAI-termination	PbI₂-termination	MAI-termination	PbI ₂ -termination
[001]	1.24	3.25	1.27	3.42
[011]	1.27	3.78	1.34	3.36
[111]	1.95	3.79	1.61	3.49

$\label{eq:sigma} \begin{array}{l} \textbf{Table S10}. Binding energy (BE) of the $SnO_2/MAPbI_3$ and $TiO_2/MAPbI_3$ interfaces on MA orientation [001] [011] and [111] at 15 GPa. \end{array}$

MA orientation	Interface binding energy (eV/nm ²)			
	SnO ₂ /MAPbI ₃		TiO ₂ /MAPbI ₃	
	MAI-termination	PbI₂-termination	MAI-termination	PbI ₂ -termination
[001]	1.47	3.45	1.52	3.64
[011]	1.52	3.94	1.61	3.54
[111]	2.08	3.99	1.74	3.69

Supplementary Figures

Fig. S1 Initial geometry of TiO₂/MAPbI₃ and SnO₂/MAPbI₃ heterojunction interfaces.

Fig. S2 Initial geometry of SnO₂ (TiO₂)/MAPbI₃ interfaces of (a-c) MAI-termination with (a) [001], (b) [011], and (c) [111] direction of MA and at (d-f) PbI₂-termination with (d) [001], (e) [011], and (f) [111] direction of MA. [Pb (black), I (purple), C (brown) N (light blue), H (white), Sn (dark blue), and O (red)].

Fig. S4 PDOS of MA, Pb, I, Sn, O at (a) 0 GPa, (b) 5 GPa, (c) 10 GPa, (d) 15 GPa.