Supporting Information

Theoretical and experimental analysis in search of new immunogenic peptides from gp120 protein of HIV-1.

Figure S1. Frequency of sequences obtained by each subtype of HIV-1 found at NCBI in 2015.

Figure S2. A. 3D structure of the HIV-1 gp120 trimer. B. Ramachandran's plot of gp120 protein.

Figure S3. Frequency of the epitopes in the different alleles of the CMH-II predicted by the ProPred server. * Asterisks in the graph indicate the peptides that by their structure and the score obtained in the servers are potential candidates for their synthesis.

Figure S4. Flow Cytometry Dot-Plots. Representative Dot-Plots for selection criteria of cell populations for the P2+CT from IN group, cells were gated based on size and granularity using FSC-A and SSC-A. Dot-Plots: A: FSC-A and FSC-H; B: FSC-A and SSC-A; C: CD3 and SSCA; D: CD3 and CD4; E: CD3 and CD8. Programs to determinate lymphocyte region; the same procedure was applied to all mice groups.

Table S1. Proteasomal cleavages predicted by the PaPROC server

Peptide	Proteasomal cleavages Type-I																		
P31	MTLTVQA\|RQLL	SGI	V	QQ	Q	S	NL	L	RAIEA	Q	Q	H	MLQL	T	VWGI	KQL	QA	RVLALERYL	KDQQ
P32	FNVTTNM \mid RDKV \mid QG \mid A \| YAL \mid F \| Y	K	LD	VVPI															
P37	LTVWGI \| KQLQA																		
Peptide	Proteasomal cleavages Type-II																		
P31	MTLTVQ\|A	RQLLSGIVQQ	QSNLL	RAIEAQQH	ML	QL	T	VWGI	KQL	QA	RVLALER	Y	L	KDQQ					
P32	FNVTTNM \| RDKVQGA	YAL	FY	K	LDVVPI														
P37	LTVWGI \| KQLQA																		
P40	MTLTVQ\| ARQL																		
Peptide	Proteasomal cleavages Type-II																		
P31	MTLTVQ\|A	RQL	LSGIVQQQSNL	L	RAIEAQQ	H	ML	QL	TV	WGI	KQL	QA	RVLAL	ER	Y	L	KDQQ		
P32	FNVTTNM \| RDKV	QGA	YAL	FY	K	L	D	VVPI											
P37	LTVWGI \| KQLQA																		
P40	MTLTVQ \| ARQL																		

Table S2. Molecular, topological and chemical reactivity parameters calculated by the DFT method with a 6-311G** used to develop the QSAR models.

Peptides		Descriptors						
No.	Secuencias	$\boldsymbol{H} \boldsymbol{y}$	$\boldsymbol{A M \boldsymbol { R }}$	$\boldsymbol{A L O G P}$	$\boldsymbol{I C R}$	$\boldsymbol{Q} \boldsymbol{\text { tot }}$	$\boldsymbol{E H O M O}$	\boldsymbol{I}
P2	FYKLDVVPI	7.776	285.854	3.308	3.968	17.844	-8.37	8.37
P6	IRPVVSTQL	7.576	204.841	-1.86	3.848	13.468	-9.07	9.07
P10	LGFLSAAGS	8.743	267.271	1.108	4.032	18.202	-8.57	8.57
P16	YKLDVVPID	16.755	277.179	-5.496	3.974	19.562	-7.8	7.8
P30	FNSTWTRND	11.574	254.704	-1.643	3.902	16.484	-9.4	9.4

$\boldsymbol{E}_{\text {номо }}=$ Energy of the HOMO orbital; $\boldsymbol{Q t o t}=$ total absolute charge; $\boldsymbol{A l o g} \boldsymbol{P}=$ Ghose-Crippen octanol-water partition coefficient; $\boldsymbol{A M R}=$ Molar refractivity; $\boldsymbol{I C R}=$ radial centric information index; $\boldsymbol{H} \boldsymbol{y}=$ hydrophilic factor; $\boldsymbol{I}=$ Ionization potential.

