Circular Economy in Hot-Dip Galvanizing with Zinc and Iron Recovery from Spent Pickling Acids

Andrea Arguillarena, ^a María Margallo, ^a Axel Arruti-Fernández, ^b Javier Pinedo, ^b Pedro Gómez, ^b Inmaculada Ortiz ^a, and Ane Urtiaga, *^a

- a. Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. De Los Castros, s.n., 39005, Santander, Spain. E-mail: urtiaga@unican.es
 b. Apria Systems, Parque Empresarial de Morero, Parcela P.2-12, Nave 1-Puerta 5,
- 39611, Guarnizo, Spain.

Corresponding autor: Ane Urtiaga

urtiaga@unican.es; Tel: +34 942 201587

SUPPLEMENTARY INFORMATION

Calculation of the mass transfer coefficient

This supplementary information provides further information on data used to calculate the mass transfer coefficient (k_m), of zinc species through the porous membranes embedded with the organic phase,

$$k_m = \frac{D_{i,B} \cdot \varepsilon}{\delta \cdot \tau}$$

where $D_{i,B}$ is the diffusivity of the zinc chloride organic complex $ZnCl_2 \cdot 2HCl \cdot 4TBP$ in the organic extractant phase (m²/h), ε is the porosity of the membrane (-), δ is the thickness of the membrane (m), and τ is the tortuosity (-).

<u>Diffusion coefficient ($D_{i,B}$)</u>

The diffusivity was calculated using the Wilke-Chang equation,

$$D_{i,B} = \frac{7.4 \cdot 10^{-8} (\phi_B \cdot M_B)^{1/2} \cdot T}{\mu_B \cdot V_i^{0.6}}$$

where ϕ_B is the coefficient of association of the organic phase (-), M_B is the average molecular weight of the organic phase (g/mol), T is the temperature (K), μ_B is the viscosity of the organic phase (cP), and V_i is the molar volume of the complex $ZnCl_2 \cdot 2HCl \cdot 4TBP$ (cm³/mol).

<u>Membrane tortuosity</u> (τ).

The tortuosity of the porous membrane was calculated using the following equation,

$$\tau = \frac{\left(2 - \varepsilon\right)^2}{\varepsilon}$$

Next table shows the data used for the $D_{i,B}$ calculation.

Property	Value	Definition
$\phi_{\scriptscriptstyle B}$	1	Coefficient of association of
		the organic phase
M _B	224.96	Average molecular weight of
	g/mol	the organic phase.
Т	293 K	Temperature
μ_B	3.2 cP	Viscosity of the organic phase
V _i	1206.0	Molar volume of
	cm³/mol	ZnCl ₂ · 2 <i>ĦCl · 4TBP</i>

Table SI.1. Data used for mass transfer coefficient ($D_{i,B}$) calculation.

The diffusivity of the zinc complex was $D_{i,B} = 1.57 \cdot 10^{-10} \text{ m}^2/\text{s}$, and the tortuosity of the porous membrane

was au=6.4. Thus, the mass transfer coefficient used in this mathematical model was k_m = 2.45·10⁻⁷ m/s