Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting Information

1,10-Phenanthroline-based periodic mesoporous organosilica: from its synthesis to its application in the cobalt-catalyzed alkyne hydrosilylation

Xiao-Tao Lin,^{ab} Yusuke Ishizaka,^a Yoshifumi Maegawa,^c Katsuhiko Takeuchi,^a Shinji Inagaki,^{*ac} Kazuhiro Matsumoto,^{*a} and Jun-Chul Choi^{*ab}

^a National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.

E-mail: kazuhiro.matsumoto@aist.go.jp; junchul.choi@aist.go.jp.

^b Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.

^c Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan.

CONTENTS

²⁹ Si DD/MAS NMR spectrum of Phen-PMO prepared with C ₂₂ TMACl (Fig. S1)	S2
²⁹ Si DD/MAS NMR spectrum of Phen-PMO prepared with Brij76 (Fig. S2)	S2
N2 adsorption/desorption isotherm of Phen-PMO prepared with Brij76 (Fig. S3)	S3
TEM images of Phen-PMO prepared with Brij76 (Fig. S4)	S3
¹³ C CP/MAS NMR spectrum of Phen-PMO 3 (Fig. S5)	S4
²⁹ Si CP/MAS NMR spectrum of Phen-PMO 3 (Fig. S6)	S4
Solution-state NMR Spectra of 1a (Fig. S7-9)	S5
Optimization of hydrosilylation conditions (Table S1)	S6

Fig. S1 ²⁹Si DD/MAS NMR spectrum of Phen-PMO prepared with C₂₂TMACl.

Fig. S2 ²⁹Si DD/MAS NMR spectrum of Phen-PMO prepared with Brij76.

Fig. S3 N₂ adsorption/desorption isotherm of Phen-PMO prepared with Brij76.

Fig. S4 TEM images of Phen-PMO prepared with Brij76.

Fig. S5 ¹³C CP/MAS NMR spectrum of Phen-PMO **3**. The asterisk (*) denotes spinning side bands.

Fig. S6 ²⁹Si CP/MAS NMR spectrum of Phen-PMO 3.

Fig. S9 29 Si{ 1 H} NMR spectrum of 1a.

	H + Pr	Co(OAc nSiH ₃)2@Phen-PMO 4 r mol%/Co) vent, <i>T</i> °C, <i>t</i> h	→ SiH₂Ph	+	SiH ₂ Ph
				5a (α isomer)	5a' (β- <i>trans</i> isome	ər)
Entry	Solvent	<i>T</i> (°C)	<i>t</i> (h)	<i>x</i> (mol%/Co)	Yield (%)	5a:5a'
1	THF	60	2	0.5	37	5:1
2	THF	60	6	0.5	54	3:1
3	THF	100	2	0.5	65	3:1
4	THF	100	2	2	67	4:1
5	Toluene	100	2	0.5	53	3:1
6 ^{<i>a</i>}	THF	100	2	—	ND^b	_

 Table S1 Optimization of hydrosilylation conditions.

^{*a*}Phen-PMO **3** was used instead of Co(OAc)₂@Phen-PMO **4**. ^{*b*}Not detected.