Supporting Information

Highly Efficient Degradation of Reactive Black KN-B Dye by Ultraviolet

Light Responsive ZIF-8 Photocatalysts with Different Morphologies

Le Gia Trung,^{a,1} Minh Kim Nguyen,^{b,1} Thi Dieu Hang Nguyen,^c Vy Anh Tran,^{d,e} Jin Seog

Gwag,^{a,*} and Nguyen Tien Tran^{f,g,*}

^a Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.

^b College of Pharmacy, Chungnam National University, Yuseong, Daejeon 34134, Republic of Korea.

^c The University of Da Nang, University of Science and Technology (DUT), 54 Nguyen Luong Bang, Da Nang, 550000, Vietnam.

^d Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.

^e Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.

^f Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam.

^g Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, 550000, Vietnam.

* Corresponding authors:

E-mail address: sweat3000@ynu.ac.kr, trannguyentien@duytan.edu.vn

¹ These authors contributed equally to this work and are co-first authors.

Figure S1. The Zn_{2p} spectra of three ZIF-8 materials (a) and O_{1s} XPS spectra of dodecahedral ZIF-8-F1 (b), pitaya-like ZIF-8-F2 (c), leaf-like ZIF-8-F3 (d) before and after three cycles of RB5 photodegradation.

The XPS spectra of three ZIF-8 materials before and after three cycles of RB5 photodegradation can be well fitted by Gaussian–Lorentz functions. The binding energies of three ZIFs for Zn_{2p} observed at approximately 1022.2 and 1045.0 eV are related to $Zn_{2p3/2}$ and $Zn_{2p1/2}$, respectively.¹ After photodegrading with RB5 dye, the peaks for Zn_{2p} shifted insignificantly, implying no chemical bonding with RB5.

The O_{1s} spectra of three initial ZIF-8 samples detected at approximately 531.1 and 532.2 eV are attributed to the hydroxyl groups (OH) that interacted with unsaturated zinc and physically absorbed water molecules (H₂O), respectively.²

Figure S2. Zeta potential measurements for the three ZIF-8 materials: 3D rhombic dodecahedron (ZIF-8-F1), pitaya (ZIF-8-F2), and 2D leaf (ZIF-8-F3) at different pH values.

Figure S3. XPS valence band (VB) spectrum of 2D leaf-like ZIF-8-F3 materials.

Figure S4. Spin-trapping Electron paramagnetic resonance (EPR) spectra of the DMPO- \cdot O₂⁻, and DMPO- \cdot OH radicals of three as-prepared ZIF-8 materials under UV light irradiation.

REFERENCES

- Pan, Y.; Liu, W.; Zhao, Y.; Wang, C.; Lai, Z. Improved ZIF-8 Membrane: Effect of Activation Procedure and Determination of Diffusivities of Light Hydrocarbons. *J. Memb. Sci.* 2015, 493, 88–96. https://doi.org/https://doi.org/10.1016/j.memsci.2015.06.019.
- Muñoz-Gil, D.; Figueiredo, F. M. L. High Surface Proton Conduction in Nanostructured ZIF-8. *Nanomaterials*. 2019. https://doi.org/10.3390/nano9101369.