Supplementary information for

"Ternary Pentagonal BXN (X = C, Si, Ge and Sn) Sheets with High Piezoelectricity"

Thanasee Thanasarnsurapong,[†] Panyalak Detrattanawichai,[†] Klichchupong Dabsamut,[†] Intuon Chatratin,[‡] Jiraroj T-Thienprasert,[†] Sirichok Jungthawan,[¶] and Adisak Boonchun^{*,†}

[†]Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand [‡] Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA

[¶]School of Physics, Institute of Science, and Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Muang, Nakhon Ratchasima, 30000, Thailand

*E-mail: Adisak.bo@ku.th

FIG S1 The (a) piezoelectric stress tensors and (b) piezoelectric strain tensors of *penta*-BXN (X=C, Si, Ge and Sn)

FIG S2 MD simulation of *penta*-BSnN at temperature of 1200 K

FIG S3 Band edge alignment of the ternary *penta*-BXN with relation to the redox potentials for water-splitting at pH = 0 (black dash line) and pH = 7 (red dash line).