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General Considerations 

Unless mentioned otherwise, all solvents, reagents, and substrates were purchased from 

commercial suppliers and were used as received, including 2’-deoxyguanosine (Fluorochem), 

3-nitropyridine (Sigma-Aldrich), Ru(bpy)3(PF6)2 (Sigma-Aldrich), DMSO (Fisher), piperidine 

(Sigma-Aldrich), and all photocatalysts, additives and amines tested in the high-throughput 

experiments (various suppliers). Compound names are those generated by ChemDraw 16.0 

software (PerkinElmer), following the IUPAC nomenclature. 

 

Analytical Methods 

Proton nuclear magnetic resonance (1H NMR) spectra were recorded at ambient 

temperature on a Bruker Avance III HD spectrometer (400 MHz), a Bruker Avance III HD Smart 

Probe spectrometer (500 MHz) or a Bruker Avance II+ spectrometer (700 MHz). Chemical 

shifts (δ) were reported in ppm and quoted to the nearest 0.01 ppm relative to the residual 

protons in CDCl3 (7.26 ppm), D2O (4.79 ppm) and DMSO-d6 (2.05 ppm) with coupling constants 

(J) were quoted in Hertz (Hz). Coupling constants were quoted to the nearest 0.1 Hz and 

multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, 

q = quartet, qnt = quintet, sxt = sextet, spt = septet, oct = octet, m = multiplet, br = broad and 

associated combinations, e.g. dd = doublet of doublets. Where coincident coupling constants 

have been observed, the apparent (app) multiplicity of the proton resonance has been 

reported. Data were reported as follows: chemical shift (multiplicity, coupling constants, 

number of protons and molecular assignment). 

 

Carbon nuclear magnetic resonance (13C NMR) spectra were recorded at ambient 

temperature on a 400 MHz Bruker Avance III HD spectrometer (101 MHz) or a 500 MHz Bruker 

Avance III HD Smart Probe spectrometer (126 MHz). Chemical shifts (δ) were reported in ppm 

and quoted to the nearest 0.1 ppm relative to the residual solvent peaks in CDCl3 (77.16 ppm) 

and DMSO-d6 (39.52 ppm). DEPT-135, NOE experiments and 2D experiments (COSY, HMBC 

and HSQC) were used to support assignments when appropriate but were not included 

herein. Fluorine nuclear magnetic resonance (19F NMR) spectra were recorded at ambient 

temperature on a 400 MHz Bruker Avance III HD spectrometer (376 MHz). Chemical shifts (δ) 
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were reported in ppm and quoted to the nearest 0.1 ppm relative to the residual solvent 

peaks in CDCl3 (77.16 ppm).  

 

Infrared (IR) spectra were collected using a Thermo Fisher Scientific Nicolet Summit Pro 

equipped with an Everest ATR, with absorption maxima (νmax) quoted in wavenumbers (cm-

1).  

Analytical thin layer chromatography (TLC) was performed using pre-coated Merck glass-

backed silica gel plates (Silica gel 60 F254 0.2 mm). Visualization was achieved using 

ultraviolet light (254 nm) and chemical staining with basic potassium permanganate solution 

as appropriate, or otherwise stated. Flash column chromatography was undertaken on Fluka 

or Material Harvest silica gel (230-400 mesh) under a positive pressure of air unless otherwise 

stated.  

 

Analytical mobile phases for LC–MS in both projects were A = 2.5 L acetonitrile + 131 mL 

water + 1.25 mL and formic acid, B = 2.4 L water + 1.50 g ammonium formate + 2.4 mL formic 

acid. The autosampler was washed between each run with a 1:1 mixture of acetonitrile:water. 

Gradients were generally 5-95% over 0.8/1.2 min. 

 

Low resolution LC–MS for HT quantification: samples were analysed using a Shimadzu LC–

MS; SIL-20AC XR autosampler, 2 × LC-20 AD XR pumps, CBM-20A communicator, SPD-M20A 

photodiode array (PDA), CTO-20AC column oven and LCMS-2020 mass spectroscopy unit. The 

384-well analysis plate was placed into autosampler on a Shimadzu microtiter plate (MTP) 

rack. All samples were run on a Kinetex®
 2.6 µm, 50 × 2.1 mm, 100 Å C18 column (Cat. No. 

H16-189446). The mass spectrometry unit was set to dual mode (DUIS), in which both 

atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI) mode are 

used simultaneously, in the positive mode and set for selective ion monitoring of M+1 for 

product and internal standard (scan speed 15000u). Data analysis was undertaken using 

Shimadzu Lab Solutions software (Version 5.97) and exported into Microsoft Excel for further 

statistical tests and data visualisation. 

 

Nanoscale C–H activation: Nanoscale reactions (50-100 nmol) were run using Corning 1,536-

well plates (Corning Echo qualified, Cat. No. 3730, Cyclic Olefin-Copolymer COC, 12.5 µL-wells, 
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flat bottom, clear) as reaction plates. Reactions at elevated temperatures were ran in Corning 

1,536-well White High Base plates (Cyclic Olefin Copolymer Cat. No. 4570) and typically with 

Axygen 384-well plates (Cat No. P-284-120SQ-C, Polypropylene, 120 µL, V-bottom, 

translucent) used as solution source plates for stock solutions and for analytical plates on LC–

MS equipment. Analysis plates were sealed with gas permeable adhesive sheets (4titude, Cat. 

No. 4ti-0516/384). 

 

 
Figure S1 The Mosquito liquid handling robot 

 

For reactions at elevated temperatures: the 1,536-well plates were covered by a 

perfluoroalkoxy alkane (PFA) mat (0.125 mm thickness, FLONFILM™ 600 PFA film), followed 

by a neoprene rubber matt (on top and below) and then secured within a custom-built plate-

sealing device, which was tightened through gradual even turning of all 14 screws in a 

crosswise pattern. The entire assembly was heated in an oven for the reaction duration. Once 

complete the assembly is cooled in a laboratory fridge to ~10 °C, minimising contamination 

when unsealed. Following this, the plate is removed from the assembly and centrifuged prior 

to Mosquito dosing, Figure S1 illustrates the Mosquito liquid handling robot. However, 

commercial plate-sealing alternatives to this are now available from Analytical Sales and 

Services Inc. (Cat. No. 1626100).  
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High Throughput Experimentation 

Reaction preparation: stock solutions of the reaction components were prepared in N-

methyl-pyrrolidone (NMP) according to table S1, below. Stock solutions were then charged 

into a 384-well source plate according to the source plate layouts in Figure S2. The required 

volume for each source well was calculated to include an additional 20 µL top-up, ensuring 

that there would be an excess during plate dosing. 

 
Figure S2 Source plate layout for the high throughput optimization 

 

The Mosquito liquid handling robot was used to sequentially transfer 0.5 µL aliquots of each 

of the six reaction components from the 384-well source plate to the 1,536-well reaction plate 

(dosing sequence given in Table S1). Upon dosing the final reagent, three cycles of the 

Mosquito’s dispense mix setting (500 nL, move 0.5 mm), was used to ensure all reagents were 

evenly distributed. Silver carbonate is completely insoluble in NMP and settles at the bottom 

of source plate wells in ca. 1 min, blocking pipettes and leading to inconsistent 

stoichiometries. As such, preparation of the source and reaction plates required an alternate 

method; i) a slurry of the required concentration in NMP was prepared; ii) under vigorous 

stirring, using hand-held electronic pipettes, the source plate was charged with the required 

aliquot (68 µL); iii) the Mosquito was paused after each transfer from source plate to the 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A L0 L17

B L1 L18

C L2 L19

D L3 L20

E L4 L21

F L5 L22

G L6 L23

H L7 L24

I L9 L25

J L10 L26

K L11 L27

L L12 L28

M L13 L29

N L14 L30

O L15 L31

P L16 L32

Pd
(O

Ac
) 2

Pd
(O

TF
A)

2

Ag
2C

O
3

1,
4-

be
nz

oq
ui

no
ne

Am
in

e 
1

Ph
B(

O
H

) 2

Ph
Bp

in

Pd
(P

hC
N

)2
Cl

2



 

 7 

reaction plate and wells containing silver carbonate were mixed with the ‘aspirate-mix’ 

function (20 µL, 3 rounds) of a multi-channel electronic pipette. This method allowed for 

consistent dispensation of insoluble reagents. 

 

Table S1 Dosing table of the HT optimization of C(sp3)–H activation of amine 1 

Dosing 

sequence 
Reagent Equiv. Concentration / ᴍ 

Min source plate vol.  

(+ top up) / µL 
Aliquot / µL 

1 MPAA ligands 0.25 0.060 24 (+20) 0.5 

2 Pd pre-catalyst 0.10 0.024 16 (+20) 0.5 

3 Ag2CO3 2.5 0.60 48 (+20) 0.5 

4 1,4-benzoquinone 2.0 0.48 48 (+20) 0.5 

5 amine 2.5 0.60 48 (+20) 0.5 

6 boronates 1.0 0.24 24 (+20) 0.5 

- Total - 0.04 - 3.0 

 

 

The reaction plate was then placed into a custom-designed aluminium plate sealer 

(commercial alternatives now available, i.e., Analytical Sales NanoNest), topped with a 

chemically inert PFA film (0.125 mm thick) and a silicone gasket. The assembly was secured 

by gradually tightening 14 screws in a cross-wise pattern, ensuring even compression on all 

sides of the reaction plate. The entire assembly was then placed in a temperature-controlled 

laboratory oven set to 55 °C.  

 

Analysis: After the desired reaction time had elapsed, the assembly was removed from the 

oven, allowed to cool to room temperature and placed in a 10 °C fridge for 10 min prior to 

opening (generating negative pressure inside the wells and avoiding messy pressure release). 

The Mosquito was used to aspirate and transfer 100 nL from each reaction well into a 384-

well ‘analysis plate’ which was pre-loaded with 50 µL of a quenching diluent, 

MeCN:H2O:formic acid (2:1:1) that contained a known concentration (0.04 mM) of an internal 

standard (N,N-dibenzylaniline, DBA). This plate was then diluted further by the addition of 

50 µL of the IS-doped diluent, sealed with an adhesive LC–MS autosampler-compatible 

sealing film and analysed by LC–MS (Shimadzu LC–MS-2020, selective ion monitoring to 

follow the total ion count of the IS and arylated product). Prior to calibrant and reaction 
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sample analyses, 200 matrix-matched ‘sacrificial samples’ were used to pre-condition the LC–

MS, ensuring consistent performance between runs.  

 

Calibration samples: Using authentic, independently synthesized, product four known-

concentration calibration samples were prepared with product/IS ratios of 0.25, 0.50, 0.75 

and 1.0 (Table S2), matching the concentration of the reaction samples. These were analysed 

immediately preceding and following the reaction samples, repeats were averaged to build a 

calibration curve for the desired product (Figure S3). Analytical data were pre-processed in 

the native LabSolutions software (version 5.97), before being transferred to Microsoft Excel 

for final processing and visualisation.  

 

Table S2 Composition of calibration samples 

Calibration 

Sample 
IS conc. / mM Product Conc. / mM Calib. (% Yield) 

Prod/IS TIC 

Ratio 

1 0.040 0.000 0 0.00 

2 0.040 0.010 25 0.26 

3 0.040 0.020 50 0.50 

4 0.040 0.030 75 0.71 

5 0.040 0.040 100 0.97 

Reaction Sample 0.040 Unknown Unknown Unknown 

 

 
Figure S3 Product calibration curve used to quantify product in the reaction mixture 
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Reaction Scheme and Ligand Structures 
 

 

Figure S4 Ligands explored in the HTE C(sp3)–H activation of tertiary alkylamine 2. Ligand 8 is not represented in the table 

since this was initially the blank – for convenience the blank was changed as L0.  
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Synthesis of Materials 
 

N,N-dimethyl-1-(tetrahydro-2H-pyran-4-yl)methanamine (2) 

 

 

 

To (tetrahydro-2H-pyran-4-yl)methanamine (2.6 mL, 21.9 mmol) was added formaldehyde 

(5.6 mL, 37% aq., 69.0 mmol) at 0 °C with vigorous stirring. Formic acid (4.7 mL, 91.0 mmol) 

was added over 5 minutes and the reaction left to rise to room temperature over 1 hour, then 

heated to 85 °C for 24 hours. The yellow reaction mixture was cooled to room temperature 

and HCl (20 mL, 3.0 M aq.) was added. The aqueous mixture was washed with diethyl ether 

(3×40 mL) and the pH adjusted ca. pH 8. The aqueous layer was then extracted with diethyl 

ether (3×40 mL). The combined organic extracts were dried over MgSO4, filtered and 

concentrated in vacuo. The resulting colourless oil was purified by vacuum distillation (93-95 

°C, 75 mbar) to yield 2 as a colourless oil (1.45 g, 46%). 

 
1H NMR (400 MHz, CDCl3) δ 3.96 (dd, J = 11.3, 3.7 Hz, 2H, H5eq), 3.38 (td, J = 11.8, 2.0 Hz, 2H, 

H5ax), 2.20 (s, 6H, H1), 2.11 (d, J = 6.9 Hz, 2H, H2), 1.80 – 1.59 (m, 3H, H3/H4eq), 1.26 (qd, J = 

12.0, 4.5 Hz, 1H, H4ax). 

 
13C NMR (101 MHz, CDCl3) δ 67.9 (C5), 66.4 (C2), 45.9 (C1), 33.2 (C3), 31.6 (C4).  

 

Analytical data agrees with those reported previously.1  
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N,N-dimethyl-1-(3-phenyltetrahydro-2H-pyran-4-yl)methanamine (3) 

 
An oven dried 10 mL microwave vial, equipped with a stir bar was charged with Pd(OAc)2 

(6.7 mg, 0.03 mmol), N-acyl-L-tert-leucine (10.4 mg, 0.06 mmol), benzoquinone (64.9 mg, 

0.60 mmol), silver carbonate (207 mg, 0.75 mmol), N,N-dimethyl-1-(tetrahydro-2H-pyran-4-

yl)methanamine (107 mg, 0.75 mmol) and NMP (6.5 mL). The vial was sealed, heated to 50 °C 

and stirred at 1000 rpm before benzeneboronic acid (36.6 mg, 0.30 mmol) was added as a 

solution in NMP (1 mL). The reaction mixture was stirred for 18 h, cooled to room 

temperature, diluted with diethyl ether (50 mL) and washed with 1% aq. NaOH (5×200 mL). 

The organic phase was dried over MgSO4, filtered, and concentrated in vacuo to yield a brown 

oil which was purified by column chromatography (silica gel, 99:1 CH2Cl2:0.45 M NH3 in MeOH, 

Rf = 0.25) to yield 3 as a light brown oil (22.5 mg, 34%). 

 
1H NMR (400 MHz, CDCl3) δ 7.31 (t, J = 7.3 Hz, 2H, H10), 7.26 – 7.20 (m, 1H, H11), 7.17 (d, J = 

6.8 Hz, 2H, H9), 4.09 (dd, J = 11.5, 4.2 Hz, 1H, H6eq), 3.87 (dd, J = 11.4, 4.4 Hz, 1H, H5eq), 3.53 

(td, J = 11.9, 2.1 Hz, 1H, H6ax), 3.35 (t, J = 11.2 Hz, 1H, H5ax), 2.51 (td, J = 10.8, 4.4 Hz, 1H, H4), 

2.10 (s, 6H, H1), 2.08 – 1.95 (m, 3H, , H7eq , H3, H2’), 1.89 (dd, J = 11.6, 2.5 Hz, 1H, H2’’), 1.43 

(tdd, J = 13.4, 10.6, 4.5 Hz, 1H, H7ax); 

 
13C NMR (101 MHz, CDCl3) δ 140.6 (C8), 128.6 (C10), 127.9 (C9), 126.8 (C11), 73.8 (C5), 68.4 (C6), 

63.6 (C2), 48.3 (C4), 45.8 (C1), 38.0 (C3), 31.2 (C7); 

 

IR νmax/cm-1 (thin film) 2945, 2817, 2763, 1602, 1493, 1455, 1455, 1385, 1301, 1266, 1236, 

1177, 1129, 1088, 1052, 1041, 1013, 997, 977, 901, 869, 846, 793; 

 

HRMS (m/z): [M]+ calcd for C14H21NO, 220.1696; found, 220.1698.  
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Preparation of the Dataset 

The obtained HTE data (see heatmap in Figure S5) was analyzed with respect to the deviation 

of the single measurements (within the quartet) and eventually used to create the dataset for 

modelling. Within the heatmap the lines refer to the number of the ligand (L0 = no ligand) 

and the columns refer to the precatalyst (C1 = palladium(II)acetate, C2 = 

palladium(II)trifluoroacetate, C3 = bis(benzonitrile)palladium(II)chloride) as well as the 

boronates. As visible, all experiments were conducted four times and the mean yield of each 

quartet was used for the modelling. We obtained an average standard error of the mean of 

2.8% (Eqn. 3), an average mean absolute deviation of 3.1% (Eqn. 4) and an average maximal 

deviation of 5.3% (Eqn. 5).  

 

𝜎!! = # "
#$"

$ %𝑥%& − �̅�&)
'#

%
   Eqn. 1 (standard deviation)	

𝜎!̅! =
"
√#
𝜎!!       Eqn. 2 (standard error of the mean) 

𝜎!̅ = +"
*
∑ 𝜎!!'
*
& 	    Eqn. 3 (average standard error of mean)	

𝑀𝐴𝐷 = "
*
∑ "

#$"
∑ 0𝑥%& −	�̅�&0#
%

*
&    Eqn. 4 (average mean absolute deviation) 

𝑚𝑎𝑥𝐴𝐷= "
*
∑ max

%
*
& |𝑥%& −	�̅�&|	   Eqn. 5 (average max absolute deviation) 

Where 𝑛 = 4 is the number of repetitions and 𝑁 = 186 is the number of conditions. 
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Figure S5 Heatmap of the data obtained from HTE screening, lighter hues indicate higher conversion 
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It should be noted that individual results that surpassed 100% yield were observed. Although 

the precise reason for this is extremely challenging to determine, analytical artifacts such as 

these can arise in the preparation of the analytical samples, the sampling of the analytical 

plate by the LC–MS autosampler, or during the analytical run. To mitigate the impact of such 

events on the overall data quality, each condition was run in quadruplicate and averaged. 

With each datapoint being the average of four repeats the impact that a single erroneous 

result can have on the overall dataset was thought to be minor and, as such, we decided not 

to eliminate any artificially high results (e.g., L7-C3) and instead treat all data points uniformly. 

 

To provide a dataset for subsequent modelling, we calculated the average of all 

measurements which resulted in a dataset of 186 single datapoints. Whilst some single 

measurements had a yield above 100%, the averaged values did not. 

 

 
Figure S6 Condensed heatmap alongside the standard deviation of repeated measurements  
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Generation of Morgan Fingerprints  

All reagent molecules (pre-catalyst, ligands, boronates) were drawn using ChemDraw and 

then the SMILES were generated. The SMILES were canonicalized using the package RDKit in 

python. Then RDKit (RDKit version 2020.03.2) was used to generate Morgan fingerprints of a 

radius 2 with a set length of 1024. The three fingerprints were concatenated and saved as 

Numpy arrays for subsequent modelling. Initially, different radii of circular fingerprints of the 

ligand molecules were screened, and it was observed that a radius of 2 was ideal due to the 

lowest model error. Figure S7 illustrates different radii of Morgan fingerprints versus their 

RMSE of three different ML models (RF, GP, ANN) – the RMSE is averaged from three single 

evaluation (prediction of yield) of a random split of the data (80% training, 20% test data) and 

the error bars represent the standard deviation. 

 
Figure S7 Variation of the used radius for fingerprint generation. The presented values are averaged from three single 

evaluations using random split (80/20 : train/test) and the error bars represent the standard deviation. 

Based on the generated fingerprints we conducted a similarity assessment between all 

ligands using the Tanimoto similarity index (using RDKit) (see heatmap in Figure S8a). 

Moreover, hierarchical clustering was conducted (using the SciPy python package) to allow 

for insights into similarities between the ligands and understand which are structurally close. 
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Figure S8 Similarity assessment of the ligand scope (a) Tanimoto similarity index between all ligands (b) Dendrogram showing 

hierarchical clustering of all ligands  
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Density Functional Theory (DFT)-based Geometry Optimization 

For DFT geometry optimizations we relied on the B3LYP functional and 6-31G(d) basis set 

(Gaussian 16). As stated in the manuscript, DFT was used for unbound ligand molecules only. 

This section details the generation of steric and electronic descriptors. In addition to the 

features explained below we also calculated HOMO/LUMO energies of the ligand molecules. 

Table S3 displays all DFT derived descriptor values. 

 

Sterimol Parameters 

Sterimol descriptors comprise of three single length measurements that capture the steric 

footprint of a molecule across a specified axis and relative to a fixed point of reference. All 

calculations were conducted using a python package developed by Brethomé et al. and the 

geometry optimized ligand molecules.2 Parameterization was separated into the a-carbon 

residue (Figure S9, R-res) and the acetyl residue (Figure S9, N-res). The arrows in the figure 

indicate the direction of the reference axis. 
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Figure S9 Sterimol parameters of the N-residue and the R-residue. The molecule on top indicates the reference axis for 

generation of the Sterimol parameters and the six plots show the results of the calculation.  
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Percentage Buried Volume 

The bulkiness of the a-carbon residue was additionally quantified by calculating the 

percentage of the buried volume, based on geometry optimized ligand molecules. In this case 

the a-carbon was set as center and the calculation was conducted regarding solely the 

residue on the a-carbon position, using the SambVca 2.1 web application3 as shown in Figure 

S10. The used reference pane of the 4 neighbouring atoms and the direction of the reference 

axis is shown in Figure S10a. Figure S10b illustrates the part of the molecules (R-res) that was 

considered for the calculation (here a tert-butyl group) and Figure S10c is a two-dimensional 

steric heatmap of the outcome of the calculation of the % buried volume. The graph (Figure 

S10d) displays the results of the calculation and allows for steric insights into the bulkiness of 

the ligand molecule. 
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Figure S10 Calculation of the percentage buried volume (a) Structure and DFT optimized geometry of ligand 14. Illustration 

of the center, reference axis and pane for calculation of the % buried volume (b) Illustration of the actual R-residue (here tert-

butyl) which was considered for the calculation (c) Graphic illustration of the two-dimensional steric heatmap of the 

calculation of the % buried volume from the web-based platform (d) Results of the % buried volume calculation. 
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Natural Bond Orbital (NBO) Analysis 

In order to capture the electron density distribution, we conducted a NBO analysis using 

Gaussian 16.4 Figure S11 illustrates the location of the atoms in the ligand molecule which 

were selected for NBO analysis as well as the results of the calculation. 

 

 
Figure S11 Location of the atoms which were used for the NBO analysis and results of the NBO calculation of all ligands. 
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CHarges from ELectrostatic Potentials Using a Grid-Based Method (ChELPG) Analysis 

CHELPG5 analysis was conducted for all ligands using Gaussian 16. Figure S12 illustrates the 

location of the atoms in the ligand molecule which were selected for CHELPG analysis as well 

as the results of the calculation. 

 

 
Figure S12 Location of the atoms which were used for the CHELPG analysis and results of the CHELPG calculation of all ligands. 
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Summary of DFT Descriptor Values 

Table S3 includes all values of the DFT based descriptors. 

 

Table S3 Summary of all calculated DFT descriptors 
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Machine Learning  

Within this study five different ML surrogate models were used. Information on the chosen 

hyperparameters, the used software packages and the implementation can be found in this 

section. ML hyperparameter tuning was conducted for all models using feature set 14 within 

the initial supervised ML (random split). We observed that tuning hyperparameters 

separately for each feature set did not deliver significantly better performance than using the 

hyperparameters obtained when using feature set 14. 

 

Figure S13 illustrates the workflow of parameterizing inputs and subsequentially conducting 

initial supervised ML and active ML featured closed-loop optimization. 

 

 
Figure S13 ML workflow in this study: The input data was parameterized and then used for supervised ML studies and for 

active ML. 

Linear Model 

We implemented the linear model using the package scikit-learn, version 0.23.0 – this version 

was used for all subsequent modelling. Unless explicitly stated, all parameters were left at 

default values. 

Random Forest 

We implemented the random forest surrogate model using the package scikit-learn. A total 

number of 200 estimators were used consistently for modelling. Unless stated otherwise all 
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parameters were kept to default. Unless explicitly stated, all parameters were left at default 

values. 

 

Gaussian Process 

We implemented the Gaussian process model using the package scikit-learn. As covariance 

function we used a Matèrn 3/2 kernel with a common length scale for all inputs. We observed 

that adding a white kernel to account for measurement noise did not improve the prediction 

performance and was hence omitted.  

 

kernel = 1.0 * Matern(length_scale=1.2, nu=1.5) 

 

Artificial Neural Network 

The artificial neural network model was implemented using the Tensorflow Keras 2.3.0. The 

fully connected feed-forward network consisted of six hidden layers of ten nodes each and 

ReLu activation function. The final layer consisted of one single node. The weights and biases 

were initialized with the default schemes (Glorot uniform and zeros, respectively). Training 

was done with RMSProp using default parameters over 1000 epochs with a minibatch size of 

32. 

 

Adaptive Boosting Model 

We implemented the AdaBoost model using the package scikit-learn. A total number of 200 

estimators were used consistently for all modelling. 

 

Support Vector Regression 

We implemented the support vector regression model via the package scikit-learn using a 

linear kernel. 
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Leave-one-group-out (LOGO) Cross Validation (CV) 

LOGO CV was used within the study of supervised ML to assess the models’ performance to 

conduct extrapolative predictions. Figure S14 allows for insights into the single folds of the 

LOGO CV using feature set 14. This plot illustrates the test/train RMSE (y-axis) of the single 

groups (x-axis, 1-31), highlighting that the modelling performance strongly varies from ligand 

to ligand. Additionally, it is visible how different models fit train/test data.  

 
Figure S14 Detailed insights into the LOGO CV of different surrogate models 

To investigate a potential correlation of the variation of the different train/test folds on model 

performance we looked at structural similarity. Using the Tanimoto similarity index,6 the 

similarity between the training data (30 of the 31 ligands) and the test data (1 of the 31 
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ligands) was calculated and then the average of the values was taken for all 31 ligand 

molecules. Figure S15 shows the relationship between the averaged similarity indices and the 

RMSE of all 31 folds. When overlaying the results from all 5 models a higher density of 

datapoints in the lower right quadrant of the plot suggests that higher similarity between test 

and train data delivers lower model error, as expected. This follows the rational 

considerations of ML that model performance is typically increased when the training and 

test data have a higher similarity. 

 
Figure S15 Insights into the LOGO CV evaluation - RMSE of the fold vs train-test data similarity using Tanimoto similarity index 

(feature set 14). The circle indicates increased density of datapoints, suggesting that a higher similarity leads to a lower RMSE. 

This follows general considerations of ML that increased similarity of training and test data delivers better performance. 
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Feature Importance Assessment of the Random Forest 

Explainable AI (XAI) is a field which attempts to convert a ‘black-box’ model into a ‘white-box’ 

model throught increased transparency, ultimately allowing for an explanations/justifications 

as to how certain predictions were made.7, 8 The application of XAI in synthetic chemistry 

challenges should therefore allow for increased understanding of the chemical system and 

enable synthetic chemists to profit from the pattern recognition-based strengths possessed 

by ML. While black-box models often keep these patterns hidden within the model 

architecture, highlighting this information can deliver great benefits. Within this project we 

attempted XAI with a feature importance assessment – here a RF model which was trained 

on the complete hybrid feature set was subsequently analyzed using Gini importance.9 Figure 

S16 illustrates the feature importance, highlighting that the PCA of the fingerprints of the 

ligands contain relevant information while those of the pre-catalyst/boronic acid seem 

redundant. Overall, OHE also has a very low importance when combined with the other 

features in feature set 14.  

 
Figure S16 Variation of the feature importance for RF models and detailed insights into relevant features of the hybrid feature 

set 14 
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It must be noted that the feature importance slightly changes every time a RF is retrained as 

the single trees within the forest are populated differently. Nonetheless, the highest 

importance was predicted to be the NBO analysis of the amide oxygen, thus suggesting that 

the electron density around the oxygen matters. This observation reflects the known 

elements of the concerted metalation deprotonation (CMD) mechanism, with the acetamide 

oxygen functioning as an internal base that abstracts the proton. This demonstrates the ability 

of XAI to deliver chemical insights on complex systems. Moreover, the insignificance of the 

features encoding for the pre-catalyst and the boronic acid aligns with the fact that those 

parameters do have a high impact on reaction yield. As visible in Figure S5, the reaction 

outcome is mainly influenced by the ligands, rather than the identity of the pre-catalysts or 

boronates. This is clearly visible as in several rows of the heatmap (row = ligand) the whole 

row is either dark blue (low yield) or green/yellow (high yield), however, within the columns 

of the line there is only limited variation in yield.  
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Closed-loop Optimization 

Expected Improvement Acquisition Function 

Compared to a purely exploitative search within the closed-loop optimization, using the EI 

acquisition function allows for a controlled trade-off between exploitation and exploration. 

Any parameter combination 𝜃 delivers a predicted mean 𝜃(μ) and a standard deviation 𝜎(𝜃). 

Following Eqn. 6, EI can be calculated relatively with respect to the current best condition 

from previous iterations, referred to as mopt. 

 

𝐸𝐼%𝜃;	𝑚+,-) = 	𝛿(𝜃)Φ	 E
𝛿(𝜃)
𝜎(𝜃)F + 	𝜎

(𝜃)𝜙	 E
𝛿(𝜃)
𝜎(𝜃)F Eqn 6. 

where 𝛿(𝜃) = µ(𝜃) −	𝑚+,-,	Φ is cumulative standard normal,  

𝜙 is standard normal density 

 

 

The distance to the best condition is calculated by 𝛿(𝜃) and the search is conducted with the 

objective to find the 𝜃 that maximizes EI. It is noteworthy that not all ML models deliver an 

uncertainty metric, for example, GPs have built-in variance due to the model design, whereas 

ANN and RF do not have an uncertainty output. It should be noted that in our study we 

navigate in a solely discrete optimization space. 
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De-full Factorization of the Chemical Space Study 

We hypothesized that the simplicity of OHE along with a full factorial space could be more 

beneficial when compared to the effect on other input features (e.g. hybrid inputs) which are 

far more complex and might represent a challenge for the model to detect patterns in the 

data. To test this assumption, we dropped a random selection of the datapoints of the entire 

dataset (25%), therefore no longer representing a full factorial chemical space. However, we 

still observed that OHE outperformed the full feature set (Figure S17a). Figure S17b illustrates 

that even though the dataset was reduced, yield was still well distributed. 

 

 
Figure S17 Comparison of active learning model performance of a full factorial and a non-full factorial chemical space (a) 

Yield distribution of full factorial and a non-full factorial chemical space (b) Active learning curves of full factorial and a non-

full factorial chemical space 
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Batch-Sequential Active Learning 

We assessed the impact of using different batch sizes vs using sequential sampling. In Figure 

S 18 (x-axis normalized) the batch size was varied between two and 25 experiments (during 

each iteration) and sequential sampling (one experiment at a time) is illustrated as a baseline. 

The minimal differences in the learning curves indicate that smaller batch sizes have favorable 

learning curves compared to larger batch sizes. We hypothesize that a smaller batch size 

allows the active ML model to be updated more frequently and thus conduct predictions of 

slightly higher accuracy. At 40% of the chemical space (Figure 18, x-axis) the active learning 

strategy using a batch size of 25 iterated two times whereas the batch size of two iterated 30 

times. Overall though, it seems that the batch size does not significantly impact the learning 

trajectory and thus the size should mainly be chosen based on experimental restrictions (e.g. 

possible number of experiments which can be run in parallel). 

 

 
Figure S18 Comparison of different batch sizes for active learning using RF and feature set 14 
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The Impact of Initialization of the Active Learning 

The efficiency of closed-loop optimization algorithms depends on the data on which the very 

initial model is trained. Herein, we are comparing a broader set of reaction conditions (on 

average the dataset contains information of 7 ligands) to a restricted dataset (the dataset 

contains datapoints of only 3 ligands). To allow for general statements, the ligand in the 

train/test set were varied during 10 single experiments and the average of the learning curves 

was used for the plot. As visible in Figure S19, the location of the initialization data, and the 

lookup table (of one experiment) were illustrated in a dimensionality reduced 2D map that 

was generated using the first two principal components of the Morgan 2 fingerprints of all 

components. Whilst Figure S19a illustrates the initial data being randomly distributed over 

the chemical space, Figure S19b has the initial data located close to each other such that it 

has been intentionally limited to only to three ligands. It must be noted that the plot contains 

an overlap of datapoints which is a result of the dimensionality reduction. In Figure S19c, it is 

apparent that even as the local initialization possessed restricted knowledge, within ten 

iterations the model performance was approximately equal to an initialization dataset which 

is more diverse.  
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Figure S19 Random versus local initialization (a) Dimensionality reduced plot of the training and test data within random 

initialization (b) Dimensionality reduced plot of the training and test data within local initialization (c) Learning curves of the 

random versus the local initialization 
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The Impact of Initialization: Dataset Size vs. Complexity of Parameterization  

We conducted a comparison to understand the performance variation between complexity 

of the parametrization and the size of the initial dataset. In terms of size of the initialization 

dataset, 10, 15 and 20 datapoints were chosen along with OHE, Morgan 2 fingerprints and 

hybrid full feature representation. Figure S20 illustrates all the learning curves of the 

conducted experiments – in the main manuscript we restricted the plot to 4 trajectories for 

simplification. The trend of increased performance when using a larger number initialization 

datapoints using OHE as opposed to a smaller but more complex parameterized initialization 

dataset could be observed again. 

 

 
Figure S20 Evaluation of different initialization strategies for the active learning - variation of chemical representation and 

size of the initialization dataset 
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Appendix 
N,N-dimethyl-1-(tetrahydro-2H-pyran-4-yl)methanamine (1) 
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N,N-dimethyl-1-(3-phenyltetrahydro-2H-pyran-4-yl)methanamine (2) 

 
 
 
 
 


