Supporting information

One-pot synthesis of biomass-derived porous carbon-based composites as an

efficient acid-base bifunctional catalyst for self-condensation of n-butyraldehyde

Mengchao Hou^a, Fang Li^a, Aizhong Jia^a*, Yingying Wang^b and Yanji Wang^a

^a Hebei Provincial Key Laboratory of Green Chemical Technology & High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin 300130, P. R. China.

^b National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

*Corresponding E-mail: azhjia@hebut.edu.cn

Tables

Catalysts	Conversion (%)	Selectivity (%)
7.5M/PC	90.0	96.6
7.5M/CA	95.3	80.8

Reaction conditions: T= 190 °C; t= 4 h; m(MgO/PC)/m(n-butyradehyde) = 1.0 wt%.

Tab. S2 The catalysts synthesized in this study were compared with the reported solid catalysts

Catalysts	Reaction conditions	Catalyst dosage (wt %)	Conversion (%)	Selectivity (%)	Ref.
MgO	110 °C / 8 h	25.0	98.1	87.1	[1]
γ -Al ₂ O ₃	180 °C / 8 h	15.0	87.5	87.5	[2]
Ce-Al ₂ O ₃	180 °C / 8 h	15.0	93.8	88.6	[3]
TiO ₂	180 °C / 8 h	15.0	91.1	89.6	[4]
Chitosan	80 °C / 7 h	5.0	96.0	89.6	[5]
[HSO3-b-N(Et)3]p-TSA	120 °C / 6 h	10.0	89.7	87.8	[6]
—/PC	190 °C / 4 h	1.0	70.7	79.2	This work
MgO/PC	190 °C / 4 h	1.0	90.0	96.6	This work

Figures

Fig. S1. (a) CO₂-TPD and (b) NH₃-TPD profiles of the samples 7.5M/PC and 7.5M/CA.

Fig. S2. Effect of catalyst dosage on n-butyraldehyde self-condensation. Reaction conditions: T= 190 °C; t= 4 h.

Fig. S3. Effect of reaction times on n-butyraldehyde self-condensation. Reaction conditions: T= 190 °C; m(MgO/PC)/m(n-butyradehyde) = 1.0 wt%.

Fig. S4. Effect of reaction temperatures on n-butyraldehyde self-condensation. Reaction conditions: t= 4 h, m(MgO/PC)/m(n-butyradehyde)= 1.0 wt%.

Fig. S5. NH₃-TPD profiles of the samples 7.5M/PC calcinated at 600 °C and 700 °C.

Fig. S6. XRD patterns of 7.5M/PC samples with different calcination times.

References

- [1] G. Zhang, H. Hattori, K. Bull. Chem. Soc. Jpn. 1992, 62, 2070-2072.
- [2] H. Tsuji, F. Yagi, H. Hattori, H. Kita. J Catal. 1994, 148,759-770.
- [3] C. Xiong, N. Liang, H. An, X. Zhao, Y. Wang. RSC Adv. 2015, 5, 103523-103533.
- [4] P. Moggi, G. Albanesi. Appl. Catal. 1991, 68, 285-300.

- [5] X. Han, Y. Li, H. An, X. Zhao, Y, Wang. Chinese. J. Chem. Eng. 2019, 27, 2447-2454.
- [6] X. Zhang, H. An, H. Zhang, X. Zhao, Y. Wang. Ind. Eng. Chem. Res. 2014, 53, 16707-16714.