Supplementary Information for "Synergistic hydrothermal treatment of food waste digestate residues and incineration fly ash: dehydration performance and heavy metals safety"

Yu Wang ^{a, b}, Guangwei Yu ^{a, c*}, Jiajia Lin ^{a, b}, Ruqing Jiang ^{a, b}, Xinhai Xu ^{a, b},

Shengyu Xie^d, Yin Wang^a

^{a.} CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban

Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China;

^b University of Chinese Academy of Sciences; Beijing 101408, China

^c Fujian Municipal Solid Waste Resource Recovery Technology Research Center,

Xiamen 361021, Fujian, China

^d Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba,

Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan

*Corresponding Author: <u>gwyu@iue.ac.cn</u>

These contents include 3 tables and 3 figures.

Sample	Proximate analysis (wt.%)			Ultimate analysis (wt.%)						
	Ash	VM ^a	FC ^b	С	Η	Ν	S	0	H/C	N/C
DR	53.17	45.25	1.58	17.57	2.43	2.37	1.19	23.27	1.66	0.12
FA	89.50	8.98	1.52	2.21	0.04	0.30	3.30	4.65	0.22	0.11
	Na	Mg	Al	S	Si	Р	Cl		K	Ca
DR	0.43	1.34	0.68	1.	02	2.07	0.78		0.23	26.10
FA	4.90	0.64	0.31	2.	27	0.10	25.84		2.32	26.36

 $\label{eq:table 1} \textbf{Table 1} \ \textbf{Key parameters of DR and FA}$

VM^a, Volatile matter; FC^b, Fixed carbon.

Table 2 Indices of potential ecological risk assessment

C_{f}	Metal contamination	E_r	Potential ecological risk	RI	contamination
C _f ≤1	Clean	$E_r \leq 40$	Low	<i>RI</i> ≤150	Low
$1 < C_f \le 3$	Low	$40 < E_r \le 80$	Moderate	150< <i>RI</i> ≤300	Moderate
3< <i>Cf</i> ≤6	Moderate	$80 < E_r \le 160$	Considerate	300< <i>RI</i> ≤600	Considerate
$6 < C_f \le 9$	Considerate	$160 < E_r \le 320$	High	<i>RI</i> >600	High
<i>C_f</i> >9	High	<i>E</i> _{<i>r</i>} >320	Very high		

Table 3 Total concentrations of HMs in the raw materials and HTT samples

Sa	Heavy metals (mg/kg)						
mple	Cr	Cu	As	Cd	Pb		
FA	454.68±11.77	809.25±12.37	48.12±0.75	187.90±0.14	1407.25±3.89		
FAH	517.50±17.68	879.00±16.97	61.78±3.22	276.48±27.33	1413.00±60.81		
DRC	76.95±0.35	71.13±0.39	16.08 ± 0.07	2.60 ± 0.06	23.82±0.11		
DFC100	106.25±0.14	142.08±3.71	18.37±0.11	6.91±0.24	57.65±2.33		
DFC95	152.03±9.02	290.80±10.75	23.91±1.02	52.02±3.08	327.35±17.75		
DFC90	189.23±13.19	322.93±62.81	25.43±2.64	53.48±4.70	344.78±30.30		
DFC85	228.60±17.61	479.18±28.81	31.69±1.52	104.58±5.62	622.50±34.65		

Figures

Fig. 1 EEM analysis of LB-EPS (a) and TB-EPS (b) showing the fluorescence of DR and DFs.

Fig. 2 Fourier transform infrared spectra of DRC and DFCs.

Fig. 3 SEM micrographs showing the surface morphology of DRC and DFCs.