Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

In situ FTIR spectroscopy study to reveal Ga modified ZSM-5 for

boosting isobutene amination

Shiqing Wang, Xiaocheng Lan, Shiyong Xing, Babar Ali, and Tiefeng Wang*

Beijing Key Laboratory of Green Reaction Engineering and Technology

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

* Corresponding Author: Tel.: 86-10-62794132.

E-mail: wangtf@tsinghua.edu.cn (T. F. Wang)

Fig. S2 Geometry structures of H-ZSM-5 for DFT calculation. Yellow: silicon; red: oxygen; purple: aluminum; white: hydrogen; gray: carbon. 10 MR means 10-membered-ring. T represents the tetrahedral Si and Al atom.

Fig. S3 (a) XRD patterns of the catalysts. (b) XRD patterns of $Ga_{10}Al_0$ -ZSM-5, Ga_6Al_4 -ZSM-5, and Ga_0Al_{10} -ZSM-5 in 2 θ range of 22°-25°.

Fig. S4 SEM images of Ga_xAl_y -ZSM-5 catalysts. (a) Ga_0Al_{10} -ZSM-5. (b) Ga_5Al_5 -ZSM-5. (c) Ga_6Al_4 -ZSM-5. (d) Ga_8Al_2 -ZSM-5. (e) $Ga_{10}Al_0$ -ZSM-5.

Fig. S5 $N_{\rm 2}$ adsorption-desorption isotherms of the catalysts.

Fig. S6 NH₃-TPD profiles of the catalysts.

Fig. S7 IR spectra of the gas phase chemicals and corresponding vibration.

Fig. S8 Evolution of in situ FTIR spectra for isobutene protonation over Ga₆Al₄-ZSM-5.

Fig. S9 Dynamic changes of in situ FTIR spectra for the chemicals over Ga_6Al_4 -ZSM-5. (a) 2,4,4-trimethyl-1-pentene at 40 °C. (b) 2,4,4-trimethyl-1-pentene at 250 °C. (c) 2,4,4-trimethyl-2-pentene at 250 °C.

Fig. S10 Desorption of surface species over Ga_6Al_4 -ZSM-5. (a) after in situ FTIR experiment of C8-1 at 40 °C. (b) after in situ FTIR experiment of C8-1 at 250 °C.

After in situ FTIR experiment of C8-1 for 60 min (as shown in **Fig. S9**), the temperature of the catalyst was first set to 40 °C and then the IR cell was evacuated by a turbo pump to remove the gas phase. With the pressure decreasing to 5×10^{-3} Pa, IR was collected as the spectrum of 40 °C. After that, the temperature of the catalyst was set to desired value (*T*) and kept for 1 min and then was set back to 40 °C to collect the IR spectra of *T*.

Fig. S11 In situ FTIR spectra of isobutene protonation over Ga_6Al_4 -ZSM-5 at different temperature. (a) 150 °C. (b) 200 °C. (c) 225 °C. (d) 250 °C. (e) 300 °C.

Fig. S12 In situ FTIR spectra of isobutene protonation over $Ga_{10}Al_0$ -ZSM-5 at different temperature. (a) 150 °C. (b) 200 °C. (c) 225 °C. (d) 250 °C. (e) 300 °C.

Fig. S13 In situ FTIR spectra of isobutene protonation over Ga_0Al_{10} -ZSM-5 at different temperature. (a) 150 °C. (b) 200 °C. (c) 225 °C. (d) 250 °C. (e) 300 °C.

Fig. S14 In situ FTIR spectra of Hoffman elimination over Ga₆Al₄-ZSM-5 at different temperature. (a) 250 °C. (b) 275 °C. (c) 300 °C.

Fig. S15 In situ FTIR spectra of Hoffman elimination over $Ga_{10}Al_0$ -ZSM-5 at different temperature. (a) 250 °C. (b) 275 °C. (c) 300 °C.

Fig. S16 In situ FTIR spectra of Hoffman elimination over Ga_0Al_{10} -ZSM-5 at different temperature. (a) 250 °C. (b) 275 °C. (c) 300 °C.

Fig. S17 Investigation of the relative adsorption stability of the chemicals. (a) schemes of the cases. (b) the in situ FTIR spectra of case I (T = 250 °C). (c) the in situ FTIR spectra of case II (T = 250 °C). (d) the integrated peak area of band at 3050-3125 cm⁻¹ of case I and II. (e) the in situ FTIR spectra of case III (T = 300 °C).

Fig. S18 In situ FTIR dynamic changes of alkoxide. (a) under 4 kPa NH₃ atmosphere at 150 °C (a_1), 200 °C (a_2), and 250 °C (a_3). (b) under He atmosphere at 150 °C (b_1), 200 °C (b_2), and 250 °C (b_3). (b)

Fig. S19 Geometry structures of the intermediates along reaction coordinate over ZSM-5.

Samples	^a Si/(Al+Ga)	^{<i>b</i>} Surface area, m ² /g	^c Acid amount, mmol/g
Ga ₀ Al ₁₀ -ZSM-5	18.1	367	0.285
Ga ₅ Al ₅ -ZSM-5	20.2	326	0.285
Ga ₆ Al ₄ -ZSM-5	17.5	306	0.256
Ga ₈ Al ₂ -ZSM-5	21.0	302	0.214
Ga ₁₀ Al ₀ -ZSM-5	21.3	241	0.380

Table S1. Characterization of the catalysts.

^{*a*}. Measured by XRF; ^{*b*}. Calculated by BET and t-plot methods; ^{*c*}. Mid-strong acid amount measured by NH₃-TPD between 350 and 650 °C.

Table S2. Adsorption energy of the chemicals over Al-MFI and Ga-MFI.

Model	NH ₃ /eV	IBE/eV	TBA/eV
Ga-12T	-1.43	-1.08	-2.48
Al-12T	-1.47	-1.09	-2.52