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1. Detailed describe and explanation of the falling ball method
A falling ball viscosity apparatus is shown in Fig. S1. The instrument includes an 

aluminum ball, a tungsten wire, two ceramic pulleys, a regulating weight and a ruler. 

The diameter of the aluminum ball is 1.910-2 meters. The diameter of the tungsten 

wire is 310-5 meters. The inner diameter of the ceramic pulley is 310-3 meters. Before 

measurement, the aluminum ball was immersed in the pitch melt and the regulating 

weight was held. After release the movement of the regulating weight was recorded by 

video. The displacement with time was read out by analyzing the video and the moving 

speeds were calculated. 

Fig. S1. The falling ball viscosity apparatus.

The viscosity of the pitch can be regressed by simulating the movement of the ball in 

consideration of the force analysis. Take the displacement to be x in time t, and set u is 

the dropping speed of the ball, then according to the force analysis of the ball, 
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where, m1 and m2 are the masses of the ball and the regulating weight, g is the 

gravitational acceleration, FL and F1 are the buoyancy force and the viscous resistance 



that are given to the ball by the pitch melt. F2 is the frictional drag that is given to the 

tungsten wire by the pitch melt. Fi is the friction force of the pulley bock. The mass of 

the tungsten wire and its buoyancy given by the pitch melt are neglected. 

Set the radius of the ball as r1 and the density of the pitch melt is ρ , so the buoyancy on 

the ball is
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4
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Set the friction coefficient of the ball with the pitch melt and projected area of the ball 

along the movement direction as ζ and A, and u1 as the ball’s speed relative to the 

pitch melt, so according to the equation about ball dropping in a liquid, the viscous 

resistance is

𝐹1 = 𝜁𝐴
𝜌𝑢1

2

2

where calculation of the friction coefficient depends on the Reynolds numbers Re, 

according to  or  when 1<Re<1000 and Re<1respectively.
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Setting the viscosity of the pitch melt as µ, the Reynolds numbers is

𝑅𝑒 =
2𝑟1𝑢1𝜌

𝜇

Setting u to be the speed of the ball, when the ball dropping, the isometric pitch 

melt is pushed upside, therefore the ball’s speed relative to the pitch melt should be 

corrected by the following equation.

𝑢1 =  𝑢
𝑅2

𝑅2 ‒ 𝑟1
2

where R is the inner diameter of the reaction. 

So, when 1<Re<1000, 
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when Re<1,
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The viscous resistance given to the tungsten wire by the pitch melt increases with its 

immersed length, and can be calculated as follows according to the basic formula

𝐹2 = 2𝜋𝑟2𝑥 ∙ 𝜇 ∙
𝑑𝑢
𝑑𝑟

where, r2 is the radius of the tungsten wire. The velocity gradient can be simplified to 

the following equation because the diameter of the tungsten wire is much smaller than 

that of the reactor inner referred to the literature[S1].  
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So, the viscous resistance given to the tungsten wire by the pitch melt can be calculated 

by the following equation.
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The friction force Fi is proportional to the press force exerted on the pulleys by the 

tungsten wire. However, the friction coefficient was found varying with the press force, 

so a formula must be set up. Fig. S2 is the relationship between the friction coefficient 

and the press force exerted by the tungsten obtained through hanging different weights. 

The curve is identically regressed to the empirical formula.

𝐾𝑓𝑖 = 0.3288 ∗ 𝑒
‒

𝐹𝑝
0.0342 + 0.0598

where, Kfi is the friction coefficient, Fp is the total press force on the pulleys .



Fig. S2. Regressed curve of the friction coefficient of the pulley block with the total press force.

Because the total force Fp=(m1+m2)g-FL-F1-F2, therefore, the friction force Fi can be 

calculated by the following equation.
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A series of data about the distance and time of the falling ball can be obtained by 

experiment. Then from equation (1) to (7), the viscosity of the pitch melts can be solved 

by Ordinary Differential Equation (ODE) fitting with MATLAB, as shown in Fig. S3.  



Fig. S3. The drop distance and speed of the ball with drop time and the regressed curves. The 

rounds symbolize the experimented data and the lines symbolize the fitted curves 

[S1] Inagaki M, Kang F. Chapter 3 - Engineering and Applications of Carbon Materials[M]. 

Materials Science and Engineering of Carbon: Fundamentals (Second Edition), Inagaki M, Kang 

F, Oxford:Butterworth-Heinemann, 2014, 219-525.



2. The as-recorded MALDI-TOF-MS spectra of the pitch during polymerization

Fig. S4. The as-recorded MALDI-TOF-MS spectra of the pitch during polymerization. P-0: the 

raw pitch; P-0.5 to P-24: polymerized for 0.5-24h



3. The MATLAB program of the micro-kinetics model 

function dzdt = polykinetics_3_1_1(~,x,k)

global n n1 ke

dzdt=rand(3*n+n1,1);

ke=rand(1,n);

for i=1:n

    ke(i)=k(2).*exp((i-1).*k(3));

end

dzdt(1,1)=k(4).*x(n+1).*x(2*n+1)-ke(1).*x(1); 

for i=2:n

    dzdt(2*n+n1+i,1)=-k(5).*x(2*n+n1+i,1);

end

    for i=2:n

        for m=1:floor(i/2)

            dzdt(2*n+n1+i,1)=dzdt(2*n+n1+i,1)+k(4).*x(n+m).*x(n+i-m);

        end

    end

    for i=2:n

        dzdt(i,1)=k(4).*x(n+i).*x(2*n+1)-ke(i).*x(i)+k(5).*x(2*n+n1+i,1);

    end

    for i=1:n1

        dzdt(n+i,1)=k(1).*x(2*n+1+i)+ke(i).*x(i)-k(4).*x(n+i).*x(2*n+1)-

k(4)*x(n+i).^2; 

        for m=1:n-i

            dzdt(n+i,1)=dzdt(n+i,1)-k(4).*x(n+i).*x(n+m);

        end

    end

    for i=n1+1:n

        if i<n/2

            dzdt(n+i,1)=ke(i).*x(i)-k(4).*x(n+i)*x(2*n+1)-k(4)*x(n+i).^2;



        else

            dzdt(n+i,1)=ke(i).*x(i)-k(4).*x(n+i)*x(2*n+1);

        end

        for m=1:n-i

            dzdt(n+i,1)=dzdt(n+i,1)-k(4).*x(n+i).*x(n+m);

        end

    end

    dzdt(2*n+1,1)=-2*k(4).*x(2*n+1).^2; 

    for i=1:n1

        dzdt(2*n+1,1)=dzdt(2*n+1,1)+k(1).*x(2*n+1+i);

    end

    for i=1:n

        dzdt(2*n+1,1)=dzdt(2*n+1,1)+ke(i).*x(i)-k(4).*x(n+i).*x(2*n+1);

    end

    for i=1:n1

        dzdt(2*n+1+i,1)=-k(1).*x(2*n+1+i);

    end

end


