Electronic Supplementary Information (ESI)

Rational Design of graphitic Carbon Nitride Catalytic-Biocatalytic As a Photocatalytic Platform for Solar Fine Chemical Production From CO₂

Satyam Singh, ^a Rajesh Kumar Yadav, ^{a*} Tae Wu Kim, ^{b*} Chandani Singh, ^a Pooja Singh^a, Atul P. Singh,^c Alok Kumar Singh,^d Atresh Kumar Singh, ^d Jin Ook Baeg,^{e*} Sarvesh Kumar Gupta^f

^{a.} Department of Chemistry and Environmental Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, (U.P.), India. *Email: <u>rajeshkr_yadav2003@yahoo.co.in</u>.

^{b.} Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea. *Email: <u>twkim@mokpo.ac.kr</u>.

^c Department of Chemistry, Chandigarh University, Mohali,140413, Punjab, India.

^d Department of Chemistry, DeenDayalUpadhaya University, Gorakhpur.

^{e.} Korea Research Institute of Chemical Technology, South Korea. *Email: jobaea@krict.re.kr

^{f.} Nanoionics and Energy Storage Laboratory (NanoESL), Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur (U. P.), India.

Contents

1.	General remarks	S3
2.	Instruments and measurements	S3
3.	Synthesis of AQBCN photocatalyst	. S4
4.	SEM image of AQ monomer	.S5
5.	X-ray diffraction pattern of AQ monomer	.S5
6.	Energy-dispersive X-ray spectroscopy	.S6
7.	Particle size studies	S6
8.	Zeta potential studies	.S7
9.	UV-Vis diffuse reflectance spectra	.S7
10.	Reusability experiment of AQBCN photocatalyst	.S8
11.	Characterization of recycled AQBCN photocatalyst	.S8

1. General remarks

All chemicals such as 1,4-diaminoanthraquinone, Urea, Pentamethylcyclopentadienyl) rhodium (III) dichloride dimer, 2, 2'bipyridyl, diethyl ether, NAD⁺, NADP⁺, ascorbic acid (AsA), and F_{ate}DH (formate dehydrogenase) were purchased from Sigma-Aldrich and used without further purification

2. Instruments and measurements

Diffuse reflectance spectra (DRS) were recorded on the Shimadzu UV-1800 spectrometer. Fourier transform infrared spectroscopy (FTIR) spectra were obtained on a Nicole 6700 (made by Thermo Scientific, USA). The test specimen was prepared by the KBr-disk method. A powder X-ray diffractometer (D8 Advance Eco made by Bruker, Germany) was used for crystallinity. Scanning electron microscope (SEM) images and electron dispersive X-ray spectroscopy (EDS) were obtained on JSM 6490 LV (made by JEOL, Japan). Nano-zetasizer (NZS90) was used for zeta-potential and particle size studies. Laser power-dependent PL studies were performed using a 405 nm (3.06 eV) diode laser (Cube, coherent) equipped with a cooled charge-coupled (CCD) detector (Princeton Instruments, PIXIS 100B). High-performance liquid chromatograph (HPLC) used for the analysis of the production of formic acid (Model: LC-20AP, made: Shimadzu, Japan).

3. Synthesis of AQBCN photocatalyst

Scheme S1. Synthesis of AQBCN photocatalyst using AQ and U via copolymerization method.

4. XRD images of AQ monomer

Fig. S1. X-ray diffraction pattern of AQ monomer.

5. SEM image of AQ monomer

Fig. S2. SEM image of AQ monomer at 500nm.

6. Energy-dispersive X-ray spectroscopy studies

Fig. S3. Energy-dispersive X-ray spectroscopy of a) AQ, and b) AQBCN photocatalyst.

7. Particle size studies

Fig. S4. Particle Size studies of a) AQ monomer, and b) AQBCN photocatalyst

8. Zeta potential studies

Fig. S5. Zeta potential studies of (a) AQ monomer(-0.207mV) and (b) AQBCN photocatalyst(-0.501mV).

9. Diffuse reflectance spectra (DRS)

Fig. S6. UV-Vis diffuse reflectance spectra (DRS) (a) AQ and, (b) AQBCN photocatalyst.

10. Reusability experiment of AQBCN photocatalyst

Fig.S7. Recycling experiments for 1,4-NADH/NADPH regeneration and HCOOH production from CO₂. The reaction medium contains (a) 1,4-NADH regeneration [β –NAD⁺ (1.24 µmol), AsA (0.1mmol), CpM complex (0.62 µmol), and AQBCN photocatalyst (0.5mg) in 3.1 mL of sodium phosphate buffer (100 mM, pH[~] 7.0)], (b) 1,4-NADPH regeneration [β –NAD⁺ (1.24 µmol), AsA (0.1mmol), CpM complex (0.62 µmol), and AQBCN photocatalyst (0.5mg) in 3.1 mL of sodium phosphate buffer (100 mM, pH[~] 7.0)] and (b) HCOOH production from CO₂ under solar light [β –NAD⁺ (1.24 µmol), AsA (0.1mmol), CpM (0.62 µmol), F_{ate}DH (3 units) and AQBCN photocatalyst (0.5mg) in 3.1 mL of sodium phosphate buffer (100 mM, pH 7.0)].

(a) (b) 500 nm

11. Characterization of recycled AQBCN photocatalyst

Fig. S8. SEM images of AQBCN photocatalyst (a) before recycling experiment (b) after the recycling experiment of HCOOH production.