Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

## Microwave-assisted depolymerization of lignin with synergic alkali

## catalysts and transition metal catalyst in the aqueous system

Heyu Li<sup>a,b,1</sup>, Yingfang Huang<sup>a,b,2</sup>, Xiuhua Lin<sup>a,b,3</sup>, Yifan Liu<sup>a,b,4</sup>, Yuancai Lv<sup>a,b,5</sup>,

Minghua Liu<sup>a,b,\*</sup>, Yuming Zhang <sup>c\*</sup>

<sup>a</sup> Fujian Provincial Engineering Research Center of Rural Waste Recycling

Technology, College of Environment and Safety Engineering, Fuzhou University,

Fuzhou 350116, Fujian, China

<sup>b</sup> Fujian Provincial Technology Exploitation Base of Biomass Resources, Fuzhou University, Fuzhou 350116, China

° State Key Laboratory of Heavy Oil Processing, China University of Petroleum-

Beijing, Beijing 102249, China

\* Corresponding author's E-mails: mhliu2000@fzu.edu.cn; Address: College of

Environment & Safety Engineering, Fuzhou University, No.2 Xueyuan Road,

Shangjie Town, Minhou County, Fuzhou, Fujian, 350116, China

\*\* Corresponding author's E-mails: ymzhang@cup.edu.cn; Address: China University

of Petroleum-Beijing, No.18 Fuxue Road, Changping District, Beijing 102249, China

Number of pages: 7

Number of figures: 4

Number of tables: 1

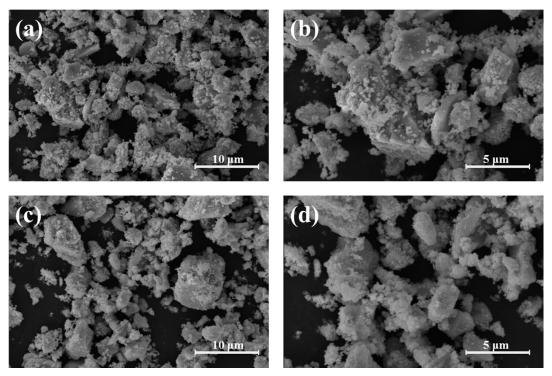



Fig.S1 The SEM image of catalysts: (a) (b)  $ZrO_2$ , (c) (d)  $Ni/ZrO_2$ 

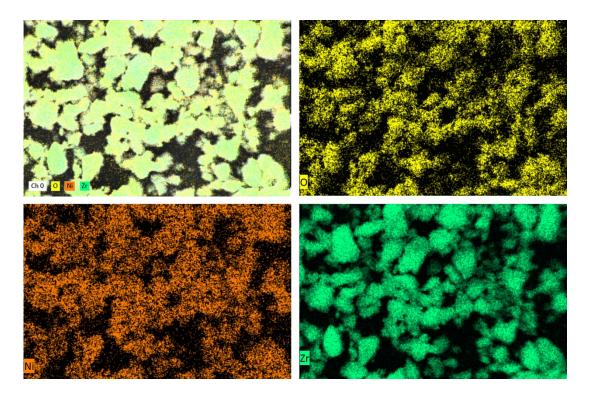



Fig.S2 The mapping of Ni/ZrO<sub>2</sub>

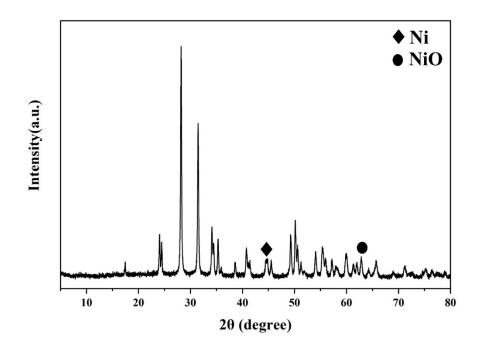



Fig.S3 The XRD pattern of Ni/ZrO<sub>2</sub>

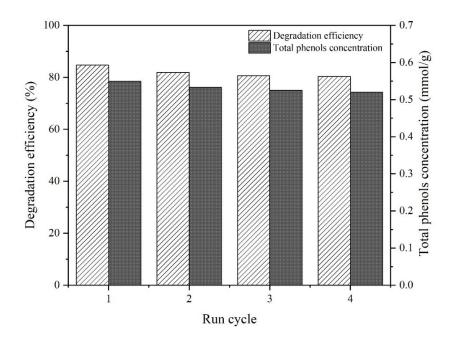



Fig. S4. Recyclability test of the Ni  $/ ZrO_2$  catalyst for depolymerization of lignin.

| Entry | Catalysts                                    | Temperature(°C) | Initial pressure(Mpa) | Reference  |
|-------|----------------------------------------------|-----------------|-----------------------|------------|
| 1     | Ni/Al <sub>2</sub> O <sub>3</sub>            | 300             | 5                     | 1          |
| 2     | Ni/HZSM-5                                    | 200             | 5                     | 2          |
| 3     | Ni-Fe/CNT                                    | 300             | 3                     | 3          |
| 4     | Ni/TiN                                       | 250             | 1                     | 4          |
| 5     | Ni <sub>1</sub> Fe <sub>1</sub> /AC          | 225             | 2                     | 5          |
| 6     | Ni <sub>10</sub> Cu <sub>5</sub> /C          | 270             | 1                     | 6          |
| 7     | Ni/ZrO <sub>2</sub> +NaOH+NaAlO <sub>2</sub> | 180             | Atmospheric pressure  | This study |

Table S1. The lignin depolymerization reaction conditions of current investigations

## **References:**

 Zhang X.; Tang W.; Zhang Q, et al. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. *Appl Energy* 2018, 227, 73-79.

 Zhao C.; Yu Y.; Jentys A, et al. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation. *Appl Catal B Environ* 2013, 132, 82-92.

3. Fang H.; Zheng J.; Luo X, et al. Product tunable behavior of carbon nanotubessupported Ni–Fe catalysts for guaiacol hydrodeoxygenation. *Appl Catal Gen* **2017**, 529, 20-31

4. Bie L.; Liu F.; Zong Z.; Liu, G.; Guo, J.; Li, Z.; Ma, Z.; Yan, W.; Wei, X., Selective hydrogenolysis of C O bonds in benzyloxybenzene and dealkaline lignin to valuable aromatics over Ni/TiN. *Fuel Processing Technology* **2020**, 209, 106523.

Zhang Y.; Li C.; Xu G, et al. Depolymerization of lignin via a non-precious Ni-Fe alloy catalyst supported on activated carbon. *Green Chemistry* 2017, 19(8), 1895-1903.
Cheng C.; Li P.; Yu W, et al. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. *Bioresource Technology* 2020, 319, 124238.