Electronic Supplementary Information

N-doped natural albite mineral as green solid catalyst for efficient isomerization of glucose into fructose in water

Jiabing Ren,^a Xin Ye,*^a Xiaoyu Shi,^a Huixing Xu,^b Lanxin Wu^a and Tianfu Wang*^{abc}

- a School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- *b* China-UK Low-carbon College, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- c Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 2002240, China

**Corresponding author:*

Xin Ye, E-mail: easonyx@sjtu.edu.cn

Tianfu Wang, E-mail: tfwang@sjtu.edu.cn

1. Additional experimental section

kinetic data fitting:

The kinetic data (the first 10 min of reaction) were fitted with the Weibull model, and the activation energy (Ea) for CS/Ab-catalyzed glucose conversion in water was calculated using Arrhenius' equation, as shown in the following equations:

$$\frac{C_t}{C_0} = exp[-(kt)^n]$$

 C_t and C_0 are the glucose concentration at time = t and 0 min , respectively; k is the reaction rate constant, and n is the shape constant.

$$k = k_0 exp\left(-\frac{E_a}{RT}\right)$$

Where k_0 is the frequency factor; *R* is the gas constant (8.314 J mol⁻¹ K⁻¹); and *T* is the reaction temperature.

2. Additional results and discussion Section

Figure S1. Correlation of basic sites with (a) glucose conversion and fructose yield and (b) fructose selectivity for all synthesized catalysts, including Ab-cal, CS/Ab with different N content^a, AR, Re1, Re2 and Re3. ^aN content (wt.%) was calculated from the theoretical nitrogen loading of the material. (Synthesis details: the N content of the material was 0, 0.5, 2.0, 4.13 and 5.8 wt.%. The process of catalyst preparation was the same as that of CS/Ab in the section 2.2)

Figure S2. (a) Glucose conversion, fructose yield and fructose selectivity obtained over CS/Ab catalysts with different N content (wt.%)^a. Reaction conditions: 3 mL of 0.1 mol L^{-1} glucose solution; 30 mg CS/Ab; 90 °C; 30 min; N₂ 1 atm. (b) The effect of N content (wt.%) of CS/Ab catalysts to base site (µmol g^{-1})^b.

^aN content (wt.%) was calculated from the theoretical nitrogen loading of the material. (Synthesis details: the N content of the material was 0, 0.5, 2.0, 4.13 and 5.8 wt.%. The process of catalyst preparation was the same as that of CS/Ab in reference to section 2.2.)

^bThe base site was quantified via acid-base titration.

Figure S3. Glucose conversion, fructose yield and fructose selectivity obtained over various catalysts. Reaction conditions: 3 mL of 0.1 mol L^{-1} glucose solution; 30 mg CS/Ab; 90 °C; 30 min; N₂ 1 atm.

Figure S4. Product distributions evolved with the reaction temperature for glucose conversion with CS/Ab catalyst. Reaction conditions: 30 min; glucose 54 mg; catalyst loading 30 mg; water 3.0 mL; N₂ 1 atm.

Figure S5. Fructose yield, selectivity and solution pH as a function of reaction time for glucose isomerization in the presence of CS/Ab. Reaction conditions: 90 °C, 3 mL of 0.1 mol L^{-1} glucose; catalyst loading 30 mg; N₂ 1 atm.

Figure S6. (a) Curve fittings using Weibull model for the kinetics of glucose isomerization over CS/Ab at 80, 90 and 100 °C. (b) Kinetics results (Ea = activation energy; R = gas constant (i.e., 8.314 J mol⁻¹ K⁻¹)) for catalytic isomerization over CS/Ab. Reaction conditions: glucose 0.1 mol L⁻¹; catalyst loading 30 mg; water 3 mL; N₂ 1 atm.

Table S1 Chemical composition of raw albite mineral (Ab) as determined by XRF (in oxide wt.%)

Material	Na ₂ O	MgO	Al_2O_3	SiO ₂	K ₂ O	CaO	Fe_2O_3	BaO	Total
Ab	5.50	4.85	17.01	59.28	4.58	7.98	0.50	0.07	99.77

Entry	Element	Weight (%)	Atomic (%)
1	C K	27.24	39.45
2	N K	4.58	5.69
3	O K	25.27	27.45
4	Al K	9.30	5.77
5	Si K	33.61	21.63

Table S2 Content of element detected by SEM-EDS over CS/Ab catalyst

Entry	Glucose	Catalyst	Reaction	Results ^b			
	concentration	loading	time (min)	X_{glu} (%)	Y _{Fru} (%)	S_{Fru} (%)	
	(wt.%)	(mg)		-			
1	0.9	30	30	46.5	42.0	90.4	
2	1.8	30	30	45.6	38.9	85.4	
3	2.7	30	30	40.1	35.4	88.2	
4	3.6	30	30	33.1	29.5	89.1	
5	5.0	30	30	31.5	27.2	86.2	
6	5.0	60	60	38.3	32.3	84.3	

Table S3 Effect of glucose concentration on the isomerization

aReaction conditions: glucose solution 3.0 mL; 90 °C; N_2 1 atm.

 bResults include glucose conversion (X_{glu}), Fructose yield (Y_{Fru}), and fructose selectivity (S_{Fru}).

Entry	Catalyst	Glucose	Т	t	X _{glu}	$\mathbf{S}_{\mathbf{fru}}$	Y _{fru}	Ref.
		concentration	(°C)	(min)	(%)	(%)	(%)	
		(wt.%)						
Homoge	neous base catalysts							
1	NaOH	10	90	-	36	50	18	1
2	Triethylamine	10	100	30	57	54	31	2
3	Ethylenediamine	10	100	30	42	60	25	2
4	Piperidine	10	100	30	49	59	29	2
Heteroge	eneous base catalysts							
5	immobilized	10	100	18	20.7	75	22	2
5	tertiary amines	10	100	40	30.7	15	23	3
6	N-enriched	5	120	20	12	84	11	Λ
0	biochar catalyst	5	120	20	12	04	11	7
7	MCN-2-DH	1	90	40	37.4	84.6	31.6	5
8	CaO/C	5	80	40	41.9	69.7	29.2	6
9	ATP	-	100	120	26.4	77.9	20.6	7
10	MgO	4	90	45	44.1	75.8	33.5	8
11	Mg-C ₃ N ₄	10	80	240	38	84	32	9
12	water hyacinth	5	120	45	35	89	31	10
13	CS/Ab	1.8	90	30	45.6	85.4	38.9	This
								work
14	CS/Ab	5	90	60	38.3	84.3	32.3	This
								work

Table S4. Isomerization of glucose to fructose obtained in this work and the literature data.

Results include glucose conversion (X_{glu}) , Fructose yield (Y_{Fru}) , and fructose selectivity (S_{Fru}) .

Entry	Catalysts	Basic sites ^a	Composition ^b (wt.%)		
		$(\mu mol g^{-1})$	Ν	С	Η
1	Fresh catalyst (CS/Ab)	567	2.24	19.47	0.65
2	AR ^c	167	2.24	21.86	0.69
3	Re1 ^d	433	2.12	20.76	0.63
4	Re2 ^d	428	-	-	-
5	Re3 ^d	416	-	-	-

Table S5. Characterization of the Catalysts

^aBasic sites of the materials. Calculated by the amount of p-toluenesulfonic acid (PTSA) (5 mmol L^{-1}) via acid-base titration of materials.

^bElement Analysis of the materials.

^cThe CS/Ab catalyst was used for isomerization of glucose in water at 90 °C for 1 h. ^dThe AR catalyst was treated after regeneration via calcination, subsequent soaked with NaOH aqueous solution and rinsed with deionized water until neutral.

References

- 1. I. Delidovich and R. Palkovits, ChemSusChem, 2016, 9, 547-561.
- C. Liu, J. M. Carraher, J. L. Swedberg, C. R. Herndon, C. N. Fleitman and J.-P. Tessonnier, ACS Catal., 2014, 4, 4295-4298.
- 3. N. Deshpande, L. Pattanaik, M. R. Whitaker, C.-T. Yang, L.-C. Lin and N. A. Brunelli, *J. Catal.*, 2017, **353**, 205-210.
- S. S. Chen, I. K. M. Yu, D.-W. Cho, H. Song, D. C. W. Tsang, J.-P. Tessonnier, Y. S. Ok and C. S. Poon, *ACS Sustain. Chem. Eng.*, 2018, 6, 16113-16120.
- 5. Y. Wang, J. Wang, Y. Zhang, F. Song, Y. Xie, M. Wang, H. Cui and W. Yi, *Catal. Lett.*, 2020, **150**, 493-504.
- 6. F. Shen, J. Fu, X. Zhang and X. Qi, ACS Sustain. Chem. Eng., 2019, 7, 4466-4472.
- 7. B. Li, L. Li, Q. Zhang, W. Weng and H. Wan, *Catal. Commun.*, 2017, **99**, 20-24.
- A. A. Marianou, C. M. Michailof, D. K. Ipsakis, S. A. Karakoulia, K. G. Kalogiannis, H. Yiannoulakis, K. S. Triantafyllidis and A. A. Lappas, ACS Sustain. Chem. Eng., 2018, 6, 16459-16470.
- 9 M. L. U. Rehman, Q. Hou, X. Bai, Y. Nie, H. Qian, T. Xia, R. Lai, G. Yu and M. Ju, ACS Sustain. Chem. Eng., 2022, 10, 1986-1993.
- 10 L. Yang, E. Shuang, J. Liu, K. Sheng and X. Zhang, Sci. Total Environ., 2022, 807.