Supporting Information

Highly efficient Ni-NiO/carbon nanotubes catalysts for the selective transfer hydrogenation of 5hydroxymethylfurfural to 2, 5-bis(hydroxymethyl)furan

Zixuan Liu, Zexing Huang, Wenguang Zhao, Xianxiang Liu*

National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China.

*Corresponding author: lxx@hunnu.edu.cn (X.X. Liu)

Entry	Catalyst	HMF Conversion	Selectivity (%)			
		(%)	BHMF	EMHF	BEMF	
1	Ni/CNTs	72.4	66.0	30.5	3.5	
2	NiO/CNTs	99.8	76.0	22.7	1.3	
3	Ni-NiO/CNTs	100.0	96.9	2.5	0.5	

Table S1 Catalytic performances of different catalysts for the CTH of HMF.

Table S2 Comparison results for the CTH of HMF to BHMF using different catalysts

Entry	Catalyst	H-donor	T (℃)	t (h)	BHMF yield (%)	Ref.
1	Ni-NiO/CNTs	ethanol	160	1	96.8	This work
2	CuO-Fe ₃ O ₄ /AC	iso-propanol	150	5	92.3	[1]
3	RuCu@NFC	iso-propanol	210	12	88.8	[2]
4	Ru/Co ₃ O ₄	iso-propanol	190	6	82.0	[3]
5	MnO@C-N	iso-propanol	170	21	93.0	[4]
6	Zr-DTMP	2-butanol	140	3	96.5	[5]

Fig. S1. XRD spectra of (a) NiO/CNTs catalyst calcinated in N_2 atmosphere, (b) Ni-NiO/CNTs catalyst calcinated in H_2 /Ar atmosphere, and (c) CNTs.

References

- [1] I. Elsayed, M. A. Jackson and E. B. Hassan, ACS Sustain. Chem. Eng., 2020, 8, 1774-1785.
- [2] J. Zhang, W. Xie, Q. Liang, L. Peng and L. He, ChemistrySelect, 2019, 4, 2846-2850.
- [3] T. Wang, J. Zhang, W. Xie, Y. Tang, D. Guo and Y. Ni, Catalysts, 2017, 7, 92.
- [4] Y. Feng, S. Long, G. Yan, B. Chen, J. Sperry, W. Xu, Y. Sun, X. Tang, X. Zeng and L. Lin, J. Catal., 2020, 389, 157-165.
- [5] L. Hu, N. Li, X. Dai, Y. Guo, Y. Jiang, A. He and J. Xu, J. Energy Chem., 2019, 37, 82-92.