Supporting Information for

Experimental insights on catalytic oxidation of 1,6-hexanediol to ε -caprolactone over (*p*-cymene)RuCl₂(L) complexes in non-polar media

Pratya Promchana,^a Kittisak Choojun,^{*a,b} Nararak Leesakul,^c Saowanit Saithong,^c Kittipong Chainok,^d and Tawan Sooknoi **^{a,b}

^a Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand

^b Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand

[°] Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand

^d Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Luang, Pathum Thani, 12121 Thailand

Crystallographic details of the new (p-cymene)RuCl₂(L_{N3}) compound

For the new (*p*-cymene)RuCl₂(L_{N3}) complex, the reaction was performed in dichloromethane at room temperature. This complex is air-stable under ambient conditions, and its structure is confirmed by NMR spectra, as shown in Figures S1-S2. These complexes are soluble in common organic solvents, such as acetone, DMF, CH₂Cl₂, and methanol. However, they are insoluble in water.

The crystallographic details and molecular structure of a new (*p*-cymene)RuCl₂(L_{N3}) complex are shown in Table S1 and Figure S3, respectively. The selected bond lengths and angles are summarized in Table S2. It can be seen that this complex has a pseudo-tetrahedral geometry with vertex distances of 2.408(10), 2.418(9), 2.129(3), and 1.669 Å for Ru-Cl(1), Ru-Cl(2), Ru-N, and Ru-(centroid of the *p*-cymene ring), respectively. While, the bond length of Ru-C (in *p*-cymene) is in the range of 2.174(6)-2.204(0) Å, which is similar to those reported in the literature. ¹⁻⁷ In this complex, the Ru-N is slightly shorter than those of (*p*-cymene)RuCl₂(L_{N1}) (2.17 Å).⁵ This could attribute to the higher electron density of 4-*tert*-butylpyridine (L_{N3}) as compared to pyridine (L_{N1}). Accordingly, a stronger overlapping interaction between Ru and alkyl-substituted ligands could be expected. In a supportive manner, the previously reported complexes with a donating group on pyridine ligand (i.e., L_{N2} and L_{N5}) also show a shorter Ru-N bond (~2.13 Å) (Table S2, entry 3).⁶⁻⁷

Figure S1. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{N3}) in chloroform-d₁.

Figure S2. ¹³C 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{N3}) in chloroform-d₁.

Figure S3. ORTEP representation (50% probability ellipsoid) of complex (p-cymene)RuCl₂(L_{N3}) (minor disorder part of the methyl group at C6 are omitted for clarity).

Compound complex	(p-cymene)RuCl ₂ (4-tert-butylpyridine)
Formula	$C_{19}H_{27}RuNCl_2$
Formula weight	441.38
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	
Volume	3947.3 Å ³
Density (calculated)	1.485 Mg m^{-3}
Absorption coefficient	1.064 mm ⁻¹
F(000)	1808
Crystal size	0.400 x 0.120 x 0.120 mm ³
Theta range for data collection	5-50° 3.103 to 24.997°
Index ranges	-27<=h<=27, -16<=k<=17, -15<=l<=15
Reflections collected	47536
Independent reflections	3772 [R(int) =0.0849]
Completeness to theta max = 24.997°	99.9%
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3772 / 102 / 245
Goodness-of-fit on F ²	1.040
Final R indices	R1 = 0.0353, $wR2 = 0.0758$
R indices (all data)	R1 = 0.0519, wR2 = 0.0830
Largest diff. peak and hole	0.888 and -0.735 e.Å-3
CCDC Number	1970821

Lable 51. Crystanographic detail of (p cymenc) (aCl ₂ (L _N)	$RuCl_2(L_{N3}).$	(p-cymene)	of (detail	graphic	Crystall	S1 .	Fable
---	-------------------	------------	------	--------	---------	----------	-------------	--------------

		5

Entre	A 4	(<i>p</i> -cymene)RuCl ₂ (L)							
Entry	Atom	L_{P1}^{1}	L_{P2}^2	$L_{P4}{}^3$	L_{P5}^4	$L_{\rm N1}{}^5$	L_{N2}^{6}	L _{N3}	L_{N5}^{7}
	Distances (Å)								
1	Ru-Cl(1)	2.402(3)	2.3992(8)	2.4151(5)	2.4039(9)	2.4515(5)	2.423(2)	2.4082(10)	2.414(2)
2	Ru-Cl(2)	2.379(4)	2.4022(8)	2.4154(6)	2.415(1)	2.4382(5)	2.426(2)	2.4178(9)	2.409(2)
3	Ru-L	2.425(2)	2.2642(8)	2.3438(6)	2.3500(8)	2.172(1)	2.133(6)	2.1290(3)	2.124(8)
4	Ru-(centroid of <i>p</i> -cymene)	1.705	1.701	1.708	1.694	1.686	1.677	1.6690	1.658
5	Ru-C(10)	2.225	2.223	2.213	2.203	2.220	2.214	2.201(4)	2.184
6	Ru-C(11)	2.212	2.203	2.176	2.161	2.212	2.183	2.187(4)	2.166
7	Ru-C(12)	2.219	2.178	2.213	2.178	2.229	2.178	2.174(4)	2.192
8	Ru-C(13)	2.218	2.199	2.247	2.205	2.246	2.225	2.197(4)	2.193
9	Ru-C(14)	2.225	2.242	2.245	2.235	2.215	2.179	2.174(3)	2.168
10	Ru-C(15)	2.195	2.247	2.216	2.226	2.189	2.182	2.177(3)	2.153
11	Average Ru-Cl	2.391	2.401	2.415	2.409	2.445	2.425	2.413	2.412
	Angles (°)								
12	Cl(1)-Ru-Cl(2)	88.0(1)	87.45(2)	88.40(2)	88.78(3)	87.45(1)	88.87(6)	87.94(4)	88.73(7)
13	Cl(1)-Ru-L	87.5(1)	85.02(2)	90.27(2)	82.45(3)	85.88(4)	84.8(2)	84.36(8)	87.0(2)
14	Cl(2)-Ru-L	87.4(1)	87.91(3)	87.10(2)	87.85(3)	86.85(4)	85.5(2)	87.52(8)	85.86(2)
15	C(1)-N-C(5)	-	-	-	-	118.0(2)	118.3(6)	116.60(3)	115.1(6)
16	X(1)-P-X(2)	106.4(5)	102.0(1)	100.81(9)	103.2(2)	-	-	-	-
17	X(1)-P-X(3)	101.0(5)	104.7(1)	106.29(9)	105.1(2)	-	-	-	-
18	X(2)-P-X(3)	101.8(4)	98.7(1)	99.56(9)	105.4(2)	-	-	-	-
19	Cl(1)-Ru-(centroid <i>p</i> -cymene)	124.36	126.86	124.67	124.76	128.90	127.26	127.80(6)	125.76
20	Cl(2)-Ru-(centroid <i>p</i> -cymene)	123.84	123.97	125.86	127.13	128.78	128.96	127.37(7)	128.55
21	L(1)-Ru-(centroid <i>p</i> -cymene)	132.31	131.61	128.20	131.56	128.94	128.16	127.68(9)	127.53
L	represents coordinated P, o	r N	X	represent	s ligand su	ubstituent	C or O		

Table S2. Selected bond distances (Å) and bond angles (°) for the Ru complexes.

Figure S4. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{P1}) in chloroform-d₁.

Figure S5. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{P2}) in chloroform-d₁.

Figure S6. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{P4}) in chloroform-d₁.

Figure S7. ¹H 500 MHz NMR spectrum of (p-cymene)RuCl₂(L_{N1}) in chloroform-d₁.

Figure S8. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{N2}) in chloroform-d₁.

Figure S9. ¹H 500 MHz NMR spectrum of (p-cymene)RuCl₂(L_{N4}) in chloroform-d₁.

Figure S10. ¹H 500 MHz NMR spectrum of (*p*-cymene)RuCl₂(L_{N5}) in chloroform-d₁.

Figure S11. 1,6-HD oxidation time profile using (*p*-cymene)RuCl₂L catalysts where a) L_{P1} , b) L_{P2} , c) L_{P3} , d) L_{P5} , e) L_{N1} , f) L_{N2} g) L_{N3} , h) L_{N4} , i) L_{N5} and j) [(*p*-cymene)RuCl₂]₂ catalyst (conversion (\bullet), 6-hydroxyhexa-1-nal (\blacksquare), 1,6-hexanedial (\bullet), ϵ -CL (\blacktriangle), and adipic acid (\times) (0.025 mmol Ru complex, 1 mmol 1,6-HD, under N₂ atmosphere, 110 °C, 30 mL toluene, 0.2 mmol K₂CO₃, 8 mmol MIBK).

Entw	Entry Liganda Ba		Conversion (9/)	Selectivity (%)		
Entry	Liganus	Dases	Conversion (%)	6-Hydroxyhexan-1-al	ε-CL	
1	L _{P3}	K ₂ CO ₃	28	36	64	
2	L _{P4}	K ₂ CO ₃	28	36	64	
3	L _{P5}	K_2CO_3	28	36	64	
4	L _{N1}	K ₂ CO ₃	28	29	68	
5	L _{N2}	K ₂ CO ₃	28	36	64	
6	L _{N3}	K ₂ CO ₃	28	21	61	
7	L _{N4}	K ₂ CO ₃	28	39	61	
8	L _{N5}	K ₂ CO ₃	28	21	68	
9	L _{P3}	KOH	28	33	64	
10	L _{P3}	t-BuOK	25	28	72	

Table S3. 6-Hydroxyhexan-1-al and ε -caprolactone selectivity at the similar conversion extrapolated from the reaction profile using (*p*-cymene)RuCl₂(L) catalysts.

*(0.025 mmol Ru complex, 1 mmol 1,6-HD, under N_2 atmosphere, 110 °C, 30 mL toluene, 0.2 mmol base, 8 mmol MIBK).

Figure S12. UV-VIS spectra of (*p*-cymene)RuCl₂(L_{P4}) a) before (–) and after (–) heated at 110 °C in the presence of K₂CO₃ in toluene.

Figure S13. 1,6-HD oxidation time profile using (*p*-cymene)RuCl₂(L_{P4}) catalyst with a) the addition of equimolar ε -CL, b) KOH and c) *t*-BuOK (conversion (\bullet), 6-hydroxyhexa-1-nal (\blacksquare), 1,6-hexanedial (\blacklozenge), ε -CL (\blacktriangle), and adipic acid (\times) (0.025 mmol Ru complex, 1 mmol 1,6-HD, under N₂ atmosphere, 110 °C, 30 mL toluene, 0.2 mmol K₂CO₃, 8 mmol MIBK).

Figure S14. Kinetics plot of 1,6-HD oxidation using (p-cymene)RuCl₂(L_{P4}) catalyst with the addition of equimolar ε -CL (\blacklozenge), K₂CO₃ (\blacklozenge), KOH (\blacktriangle), and *t*-BuOK (\blacksquare) (0.025 mmol Ru complex, 1 mmol 1,6-HD, under N₂ atmosphere, 110 °C, 30 mL toluene, 0.2 mmol base, 8 mmol MIBK).

Figure S15. TGA curve under air-zero (a) and mass spectra (b) attained by QTOF mass spectrometry electrospray analysis of Ru(MIBC)₄, where OR is 4-methyl-2-pentanolate group.

In addition to ¹³C CPMAS NMR (Figure 8), the TGA curve of the brown solids precipitated after mixing (*p*-cymene)RuCl₂(L_{P4}) and MIBC (in excess) showed a mass loss of ~72% of the decomposable organic fraction at 600 °C (Figure S15a). This can be attributed to four alkyl groups of MIBC, bearing approximately 28% of RuO₂ (134 g/mol) from the Ru(MIBC)₄ (506 g/mol). A slightly higher mass (~28%) compared to the theoretical value (~26%, 134×100/506) indicates a trace of Cl remained in the solid precipitate. This can be evidenced by QTOF mass spectra (Figure 15b), showing that M+35/37 (Ru(MIBC)₄·Cl, m/z~541/543) and M+70/74 (Ru(MIBC)₄·2Cl, m/z~576/578) are largely pronounced.

Figure S16. 500 MHz ¹H NMR spectra of the reaction of (p-cymene)RuCl₂(L_{P4}) with 34 mmol MIBC at 110 °C for 5 min in toluene-d₈ after left overnight; a) 0-10 ppm and b) zoom 0-4 ppm.

References

- 1 E. Solari, S. Gauthier, R. Scopelliti, K. Severin, Organometallics, 2009, 28, 4519–4526.
- 2 E. Hodson, S. J. Simpson, *Polyhedron*, 2004, 23, 2695–2707.
- D. K. Gupta, A. N. Sahay, D. S. Pandey, N. K. Jha, P. Sharma, G. Espinosa, A. Cabrera, M. C. Puerta, P. Valerga, *J. Organomet. Chem.*, 1998, 568, 23-20.
- P. Chuklin, V. Chalermpanaphan, T. Nhukeaw, S. Saithong, K. Chainok, S. Phongpaichit, A. Ratanaphan, N. Leesakul, *J. Organomet. Chem*, 2017, 846, 242–250.
- 5 H. Cao, L.-H. Cai, C.-X. Wang, X.-H. Zhu, Z.-M. Li, X.-F. Hou, J. Organomet. Chem, 2015, 775, 60–66.
- 6 J. G. Małecki, M. Jaworska, R. Kruszynski, Polyhedron, 2006, 25, 2519–2524.
- A. Rodríguez-Bárzano, J. D. A. Fonseca, A. J. Blacker, P. C. McGowan, *Eur. J. Inorg. Chem.* 2014, 2014, 1974–1983.