Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Supporting information

Reduced graphene oxide-zinc Sulfide (RGO-ZnS) nanocomposite: A new and appropriate photocatalyst for oxidative cyclization of benzylamines to benzazoles under visible-light irradiation

Mona Hosseini-Savari,* Hossein Sheikh

Supporting Information

Contents	Page
Experimental Section	3
Physical and Spectral Data	5
Tables and, Figures	26
Reference	28

EXPERIMENTAL

General

Chemical materials were purchased from Merck, Fluka, Aldrich, and Acros chemical companies. All solvents were distilled, dried, and purified by usual standard procedures. Progress of reactions was followed by TLC using silica gel polygrams SIL G/UV 254 plates. Products were purified by column chromatography on Merck Kiesel gel (70–230 mesh) or recrystallization from appropriate solvents and identified by their melting point, ¹H NMR, FT-IR, and CHNS analyzer subsequently.

Melting points were determined by Buchi Melting Point B-545 electrical melting point apparatus. NMR spectra were recorded on a Bruker Avance DPX 250 MHz spectrophotometer in $CDCl_3$ or $DMSO-d_6$ using tetramethylsilane (TMS) as an internal reference and chemical shifts were reported in ppm relative to TMS. Fourier transform infrared spectroscopy (FT-IR) spectra were obtained using a Shimadzu FT-IR 8300 spectrophotometer. Elemental analysis was performed using Thermofinigan Flash EA-1112 CHN rapid elemental analyzer.

The catalyst was characterized by UV, ICP, XRD, TEM, SEM, and BET as well as the characterization methods above. ZnS loading and leaching tests were carried out with an ICP analyzer (Varian, vista-pro). XRD spectra were taken on a Bruker AXS D8-advance X-ray diffractometer K α radiation ($\gamma = 1.5418$). SEM images were obtained on HITACHI S-4160 and HRTEM images were obtained on a Philips EM208 transmission electron microscope with an accelerating voltage of 100 kV. UV–vis diffuse reflectance spectrum was performed with a Shimadzu UV-2450 spectrophotometer. BET surface area, pore-volume, and Barret–Joyner–Halenda (BJH) pore size distribution based on nitrogen adsorption-desorption isotherms were determined with a Micromeritics ASSP 2020 equipment. UV-vis absorption spectra were obtained using a UV–visible spectrophotometer (Alpha-1106/1506). Irradiation light was under 15 W compact fluorescent lamp (CFL), 15 W blue LED, 15 W green LED and 15 W red LED.

General Procedure for the Preparation of Graphene oxide ¹

Utilizing a magnetic stirrer, we oxidized graphite by mixing H_2SO_4 : H_3PO_4 (320:80 mL), graphite flakes, and KMnO₄ (18 g). All materials were slowly added to the one-pot mixture, and the mixture was stirred for 3 days to allow the graphite to oxidize. After that, the color of the mixture turned into a dark brown color as the mixture was being stirred. The oxidation process was stopped later by adding H_2O_2 solution, which caused the mixture to change to a bright yellow color, indicating a high oxidation level. After forming the graphite oxide, it was washed three times with an aqueous solution of HCl and repeatedly with deionized water until the pH was between 4 and 5. The washing procedure consisted of centrifugation with a centrifugal force of 5,000 g followed by simple decantation of the supernatant. The graphite oxide was exfoliated during the washing process, causing the graphene solution to thicken, leading to GO gel formation.

General Procedure for the Preparation of ZnS²

The synthesis of ZnS nanoparticles has begun with the preparation of a 10 mL aqueous solution of 0.15 M ZnCl₂. Subsequently, 20 mL of 0.10 M Na₂S solution was added drop by drop to the mixture and kept stirring at room temperature for 4 h, which allows the formation of ZnS nanoparticles.

General Procedure for the Preparation of RGO-ZnS²

Typically, different ratios of GR in RGO-ZnS nanocomposites were synthesized in the following manner. After dispersing GO completely in 50 mL of deionized water by ultrasonication, 10 mL of 0.15 M ZnCl₂ solution was added to this suspension as well as heating this suspension to 333 K with magnetic stirring in an oil bath for 2 hours. By electrostatic attraction, the positively charged Zn²⁺ can adsorb onto the negatively charged GO surface. Subsequently, for allowing the growth of ZnS nanoparticles, 20 mL of 0.10 M Na₂S solution was added dropwise and stirred continuously for 4 h. Next, the mixture was transferred to a 100 mL reflux balloon and kept at 403 K for 12 h, which allowed sufficient reduction of GO to RGO. Next, the products were cooled to room temperature and recovered by filtration, washed by water, and fully dried at 333 K in an oven to obtain the final RGO-ZnS nanocomposites with different weights addition ratios of RGO, namely, 1, 5, and 10% RGO-ZnS nanocomposites.

General procedure for the synthesis of 2-phenyl-1*H*benzo[d]imidazole from amine as a precursor

To a solution, *o*-phenylenediamine (1 mmol) in 5 ml of ethanol (96%) was added 1 mmol of benzylamine and irradiated by visible light (Irradiation light was under 15 W CFL, 15 W blue LED, 15 W green LED and 15 W red LED) for 24 h. After completion of the reaction (as monitored by thin-layer chromatography (TLC)), and separation of catalyst by centrifuge, the solvent was removed, and then 20 mL H₂O was added and the mixture was extracted with ethyl acetate. The organic phase was washed with water (3×15 mL) and dried over anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure. Purification by silica gel column chromatography (70–230 mesh) using hexane-EtOAc as eluent to get pure products.

General procedure for the synthesis of 2-phenyl-1*H*benzo[d]imidazole from aldehyde as a precursor

To a mixture of o-phenylenediamine (OPD) (1 mmol.) in 5 mL of ethanol (96%) was added 1 equiv of benzaldehyde and irradiated by visible light (Irradiation light was under 15 W CFL, 15 W blue LED, 15 W green LED and 15 W red LED) for 24 h. After completion of the reaction (as monitored by TLC), and separation of catalyst by centrifuge, the solvent was removed, and then 20 mL H₂O was added and the mixture was extracted with ethyl acetate. The organic phase was washed with water (3×15 mL) and dried over anhydrous Na₂SO₄. Then the solvent was removed under reduced pressure. Purification by silica gel column chromatography (70–230 mesh) using hexane-EtOAc (10:2) as eluent to get pure products.

Physical and Spectral Data

2-Phenyl-1*H*-benzimidazole

White solid; mp: 290–292°C; (Lit. ³ mp 292°C). IR (KBr): 1620 (C=N), 3440 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 7.33-7.37 (m, 2 H), 7.60-7.71 (m, 5 H), 8.20 (d, J = 2.50 Hz, 2H), 12.34 (br-s, 1 H). Anal. Calcd for C₁₃H₁₀N₂ (194.235): C, 80.39; H, 5.19; N, 14.42. Found: C, 80.33; H, 5.25; N, 14.39.

2-(4-Nitrophenyl)-1H-benzimidazole

Yellow solid; mp: 312-314°C; (Lit. ³ mp 316 °C). IR (KBr): 1340, 1515 (NO₂)1620 (C=N), 3421 (NH) cm⁻¹. ¹H NMR (DMSO-*d*₆, 250 MHz): δ 7.21-7.31 (m, 2H), 7.58-7.67 (m, 2H), 7.72-8.19 (m, 4H). Anal. Calcd for C₁₃H₉N₃O₂ (239.232): C, 65.27; H, 3.79; N, 17.56. Found: C, 65.20; H, 3.85; N, 17.50.

2-(4-Chlorophenyl)-1*H*-benzimidazole

White solid; mp: 292°C; (Lit. ³ mp 290-292°C). IR (KBr): 1620 (C=N), 3445 (NH) cm⁻¹. ¹H NMR (DMSO*d*₆, 250 MHz): δ 7.40-7.44 (m, 2 H), 7.65-7.80 (m, 4 H), 8.16-8.21 (d, *J* = 2.50 Hz, 2H), 12.99 (br-s, 1 H). Anal.Calcd for C₁₃H₉ClN₂ (228.681): C, 68.28; H, 3.97; N, 12.25. Found: C, 68.25; H, 3.95; N, 12.34.

2-(3-Chlorophenyl)-1*H*-benzimidazole

White solid; mp: 230-232°C; (Lit. ³ mp230-232°C). IR (KBr): 1625 (C=N), 3445 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 7.21 (m, 2H), 7.49-7.64 (m, 4H), 8.13 (dd, ¹*J* = 6.65 Hz, ²*J* = 1.80 Hz, 1H), 8.21 (s, 1H), 13.04 (br-s, 1H). Anal.Calcd for C₁₃H₉ClN₂ (228.681): C, 68.28; H, 3.97; N, 12.25. Found: C, 68.20; H, 4.02; N, 12.21.

2-(2-Chlorophenyl)-1*H*-benzimidazole

White solid; mp: 233–234°C; (Lit. ³ mp 234°C). IR (KBr): 1620 (C=N), 3445 (NH) cm⁻¹. ¹H NMR (DMSO*d6*, 250 MHz): δ 7.20-7.24 (m, 2H), 7.48-7.51 (m, 2H), 7.54-7.68 (m, 3H), 7.89-7.93 (m, 1H), 12.74 (br-s, 1H). Anal. Calcd for C₁₃H₉ClN₂(228.681): C, 68.28; H, 3.97; N, 12.25. Found: C, 68.22; H, 4.09; N, 12.20.

2-(4-Bromophenyl)-1*H*-benzo[d]imidazole

White solid; mp: 292–293°C; (Lit. ³ mp 292 °C). IR (KBr): 1626 (C=N), 3445 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 7.25-7.31 (m, 2 H), 7.61-7.67 (m, 2 H), 7.80 (d, J = 7.50 Hz, 2H), 8.13 (d, J = 7.50 Hz, 2H). Anal. Calcd for C₁₃H₉BrN₂ (273.133): C, 57.17; H, 3.32; Br, 29.25; N, 10.26. Found: C, 57.15; H, 3.30; Br, 29.27; N, 10.30.

2-(4-Isopropylphenyl)-1*H*-benzimidazole

White solid; mp: 250-251°C; (Lit. ³ mp 250-251 °C). IR (KBr): 1620 (C=N), 3425 (NH) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz): δ 1.07 (d, *J* = 7.5 Hz, 6H), 2.71-2.75 (m, 1H), 7.9-7.14 (m, 2H), 7.24-7.37 (m, 2H), 7.76-7.88 (m, 2H), 8.45 (d, *J* = 7.5 Hz, 2H), 15.22 (br-s, 1H). Anal. Calcd for C₁₆H₁₆N₂ (236.316): C, 81.32; H, 6.82; N, 11.85. Found: C, 81.29; H, 6.86; N, 11.79.

2-(4-Methylphenyl)-1*H*-benzimidazole

White solid; mp: 270-272°C; (Lit. ³mp 270-272°C). IR (KBr):1620 (C=N), 3649 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 2.25 (s, 3H), 6.91 (d, J = 7.50 Hz, 2H), 7.06 (d, J = 7.50 Hz, 2H), 7.55 (d, J = 7.50 Hz, 2H), 7.84 (d, J = 7.50 Hz, 2H). Anal. Calcd for C₁₄H₁₂N₂ (208.262): C, 80.74; H, 5.81; N, 13.45. Found: C, 80.79; H, 5.80; N, 13.40.

4-(1H-Benzo[d]imidazol-2-yl)phenol

Pale yellow solid; mp: 254°C; (Lit. ³ mp 254-255 °C) IR (KBr): 1620 (C=N), 3250 (OH, NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 6.93 (dd, ¹J = 8.50 Hz, ²J = 1.25 Hz, 2H), 7.10-7.16 (m, 2H), 7.49-7.53 (m, 2H), 7.98 (d, J = 7.50 Hz, 2H), 9.94 (s, 1H), 12.58 (br-s, 1H). Anal. Calcd for C₁₃ H₁₀ N₂ O (210.234): C, 74.27; H, 4.79; N, 13.33. Found: C, 74.20; H, 4.80; N, 13.33.

2-(1H-Benzimidazol-2-yl)phenol

Yellow solid; mp: 240-242°C; (mp 242 °C). IR (KBr): 1620 (C=N), 3240 (OH, NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 6.97-7.04 (m, 2H), 7.25-7.45 (m, 3H), 7.63-7.67 (m, 2H), 8.02 (d, J = 7.80 Hz, 1H), 13.07 (s, 2H). Anal. Calcd for C₁₃ H₁₀N₂O (210.234): C, 74.27; H, 4.79; N, 13.33. Found: C, 74.21; H, 4.83; N, 13.32.

2-(4-Methoxyphenyl)-1*H*-benzimidazole

White solid; mp: 223°C; (Lit. ³ mp 222-225°C). IR (KBr): 1615 (C=N), 3430 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 3.70 (s, 3 H), 6.77 (d, J = 10 Hz, 2H), 6.86 (d, J=10 Hz, 2H), 6.95 (d, J = 10.00 Hz, 2H), 7.53 (d, J = 7.5 Hz, 2H), 9.68 (br-s, 1H). Anal. Calcd for C₁₄ H₁₂ N₂O (224.261): C, 74.98; H, 5.39; N, 12.49. Found: C, 74.90; H, 5.40; N, 12.50.

2-(Naphthalen-1-yl)-1*H*-benzo[d]imidazole

Color less powder; mp: 218°C; (Lit. ³ 218 °C). IR (KBr): 1620 (C=N), 3440 (NH) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz₁ δ : 7.34-7.41 (m, 2H,), 7.65-7.83 (m, 4H). 8.02-8.29 (m, 4H), 8.81 (br-s, 1H). Anal. Calced for C₁₇H₁₂N₂ (244.10): C, 83.58; H, 4.95; N, 11.47. Found: C, 83.52; H, 4.99; N, 11.46.

Phenyl(2-phenyl-1*H*-benzimidazol-5-yl)methanone

Pale yellow solid; mp: 221-222°C; (Lit. ³ mp 221-221.5 °C). IR (KBr): 1612 (C=N), 1643 (C=O), 3244 (NH) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz): δ 7.32-8.10 (m, 11H), 8.20 (d, *J* = 7.50 Hz, 2H), 10.02 (br-s, 1H). Anal. Calcd for C₂₀H₁₄N₂O (298.343): C, 80.52; H, 4.73; N, 9.39. Found: C, 80.59; H, 4.75; N, 9.27.

5-Methyl-2-phenyl-1H-benzimidazole

White solid; mp: 242-243°C; (Lit. ³ mp 242-143 °C). IR (KBr): 1620 (C=N), 3444 (NH) cm⁻¹. ¹H NMR (DMSO- d_6 , 250 MHz): δ 2.35 (s, 3H), 7.00 (d, *J*=8.10 Hz, 1H), 7.36- 7.55 (m, 5H), 8.14(d, *J*=7.65 Hz, 2H), 12.75 (br-s, 1H). Anal. Calcd for C₁₄H₁₂N₂ (208.10): C, 80.74; H, 5.81; N, 13.45. Found: C, 80.74; H, 5.80; N, 13.44.

2-phenylbenzo[d]oxazole

Light brown solid; m.p= 95 °C; (Lit. ⁴ mp 95-97 °C). ¹H NMR (CDCl₃, 250 MHz): δ 7.34-7.39 (m, 2H), 7.52-7.61 (m, 4H), 7.76-7.80 (m, 1H), 8.25-8.29 (m, 2H). Anal. Calcd for C₁₃H₉NO (195.07): C, 79.98; H, 4.65; N, 7.17. Found: C, 79.95; H, 4.67; N, 7.16.

2-(4-Chlorophenyl)benzo[d]oxazole

Light brown solid; m.p= 144-146°C (Lit. ⁴ mp 144-145 °C). ¹H NMR (CDCl₃, 250 MHz): δ 7.36-7.40 (m, 2H), 7.52-7.61 (m, 2H), 7.57-7.6 (m, 1H), 7.76-7.80 (m, 1H), 8.19-8.22 (m, 2H). Anal.Calcd forC₁₃H₈ClNO (229.03): C, 67.99; H, 3.51; N, 6.10. Found: C, 67.89; H, 3.53; N, 6.09.

2-(4-Methylphenyl)-1*H*-benzimidazole

Light brown solid; m.p= 114-116 °C; (Lit. ⁴ mp 113-115). IR (KBr):1620 (C=N), 3649 (NH) cm⁻¹. ¹H NMR (DMSO-*d*₆, 250 MHz): δ 2.45 (s, 3H), 7.15-7.20 (m, 2H), 7.32-7.39 (m, 4H), 7.54-7.79 (m, 2H), 8.16 (d, *J*=7.50 Hz, 2H). Anal. Calcd for C14H11NO (209.08): C, 80.36; H, 5.30; N, 6.69.Found: C, 80.36; H, 5.28; N, 5.31.

5-methyl-2-phenylbenzo[d]oxazole

brown solid; m.p= 130-135 °C; (Lit. ⁴ mp 133-135). ¹H NMR (250 MHz) δ 3.35 (s, 3H), 7.23 (d, *J* = 8.10 Hz, 1H), 7.61 (m, 4H), 7.68 (d, *J* = 8.1 Hz, 1H), 8.19 (m, 2H)

2-phenylbenzo[d]thiazole

Color less solid; m.p= 114-116 °C; (Lit. ⁴ mp 113=115). ¹H NMR (CDCl₃, 250 MHz): δ 6.36 (s, 1H), 7.36-7.52 (m, 5 H), 8.91 (d, *J* = 7.5 Hz, 2H), 8.07-8.12 (m, 2H).

2-phenylbenzo[d][1,3]oxathiole

Purple solid; mp: 290–292°C; (Lit. mp 292°C). IR (KBr): 1120 (C-O), 1240 (C-S) cm⁻¹. ¹H NMR (CDCl₃, 250 MHz): δ 6.36 (s, 1H), 7.36-7.52 (m, 5 H), 8.91 (d, *J* = 7.5 Hz, 2H), 8.07-8.12 (m, 2H).

7-(3-(4-(1*H*-Benzo[d]imidazol-2-yl)phenoxy)propyl)-1,3-dimethyl-3,4,5,7-tetrahydro-1H-purine-2,6-dione

Purple solid; mp: 280–282°C. ¹H NMR (DMSO- d_6 , 250 MHz): δ 2.36 (qu, J = 6.25 Hz, 2H), 3.25 (s, 3H), 3.48 (s, 3H), 4.10 (t, J = 6.25 Hz, 2H), 4.50 (t, J = 6.25 Hz, 2H), 7.08 (d, J = 8.75 Hz, 2H), 7.22 (dd, ¹J = 6.00 Hz, ²J = 3.00 Hz, 2H), 7.61 (dd, ¹J = 6.00 Hz, ²J = 3.25 Hz, 2H), 8.12 (s, 1H), 8.15 (d, J = 2.25 Hz), 12.82 (br-s, 1H)

Tables and, Figures

Figure S1. Three types of catalysts in terms of ZnS content. Respectively from right to left RGO-ZnS1%, RGO5%-ZnS, and RGO10%-ZnS.

Figure S2. Three types of catalysts in terms of ZnS content. Respectively from right to left RGO-ZnS1%, RGO55-ZnS, and RGO10%-ZnS.

Surface Area	187.318 m²/g	
Pore Volume	0.260 cc/g	
Pore Diameter Dv (d)	3.891 nm	

Table S1. The specific surface area of RGO55-ZnS.

Table S2. Effect of common solvents on the model reaction.^a

Entry	Solvent 1 (mL)	Solvent 2 (mL)	Conversion (%) ^b	Yield of 3a (%) ^c
1	MeCN (4)	EtOH 96% (2)	100	96
2 ^d	MeCN (4)	EtOH 96% (2)	80	43
3	MeCN (2)	EtOH 96% (1)	83	43
4	H ₂ O (6)	-	60	0
5	DMF (6)	-	20	0
6	EtOAc (6)	-	0	0
7	CH_2CI_2 (6)	-	20	0
8	Acetone (6)	-	0	0
9	THF (6)	-	0	0
10	H ₂ O (2)	EtOH 96% (4)	0	0
11	MeCN (4)	H ₂ O (2)	0	0
12	MeCN (6)	-	0	0
13	-	EtOH 96% (6)	0	0
14	-	-	0	0
15 ^e	MeCN (4)	EtOH (2)	60	0
16f	MeCN (4)	EtOH (2)	70	43
17	MeCN (4)	MeOH (2)	64	0
18 ^g	MeCN (4)	MeOH (2)	85	53
19 ^h	MeCN (4)	MeOH (2)	68	43

^a Reaction conditions: 1 mmol of benzylamine **1a** and 1 mmol of ortho-Phenylenediamine **2a** in the presence of 3 mg RGO5%-ZnS at room temperature, 24 h, CFL White (15 W). ^b Predict by the amount of benzylamine. ^c Isolated Yields. ^d 0.5 mmol of benzylamine and 0.5 mmol of ortho-Phenylenediamine. ^e EtOH absolute. ^f EtOH 90%. ^g MeOH 95%. ^h MeOH 90%.

Table S3. Effect of atmosphere on the model reaction.^a

Entry	atmosphere	Conversion (%) ^b	Yield of 3a (%) ^c
1	O ₂	95	92
2	Ar	10	0
3	air	45	30

^aReaction conditions: 1 mmol of benzylamine and 1 mmol of OPD in the presence of 3 mg RGO5%-ZnS at room temperature, CFL 15 W, 24 h. ^b Predicted by the amount of benzylamine. ^c Isolated yield.

		T : (:)	- ·	
Entry	Catalyst	Time (min)	Conversion	Yield 3a [%]
1	RGO1%-ZnS	120	97	98
2	RGO5%-ZnS	20	98	98
3	RGO10%-ZnS	20	98	98
4	-	300	0	0

Table S4. Optimization of catalyst type.^a

^a Reaction conditions: Benzaldehyde (1 mmol), OPD (1 mmol), MeOH, open to the air, irradiation under a 15 W blue LED at room temperature, 0.003 g of catalyst. ^b Yield were determined by TLC.

Table S5. Optimization of catalyst amount.^a

Entry	Amount of catalyst	Time (min)	Conversion (%)	Yield of 3a [%] ^b
1	0.001	70	98	98
2	0.003	20	98	98
3	0.004	20	98	98
4	0.01	100	98	98

^a Reaction conditions: Benzaldehyd (1 mmol), OPD (1 mmol), RGO5%-ZnS, open to the air, irradiation under a 15 W blue LED at room temperature. ^b yield were determined by TLC.

Table S6. Effect of common solvents.^a

Entry	Solvent	Time (min)	Conversion (%)	Side product (%)	Yield of 3a [%] ^b
1	EtOH	60	98	30	70
2	MeCN	60	97	50	50
3	DMF	60	Trace	Trace	Trace
4	EtOAc	60	20	0	0
5	H2O	60	Trace	Trace	Trace
6	CH ₂ Cl ₂	60	20	0	Trace
7	THF	60	0	0	0
8	-	60	Trace	Trace	Trace
9	MeOH	20	98	0	98

^o Reaction conditions: Benzaldehyde (1 mmol), OPD (1 mmol), RGO5%-ZnS (0.03 g), open to the air, irradiation under a 15 W blue LED at room temperature. ^b yields were determined by TLC.

References

- 1. N. Huang, H. Lim, C. H. Chia, M. A. Yarmo and M. Muhamad, Simple room-temperature preparation of highyield large-area graphene oxide, *International J. Nanomedicine*, 2011, **6**, 3443.
- 2. Y. Zhang, N. Zhang, Z.-R. Tang and Y.-J. Xu, Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer, *Acs Nano*, 2012, **6**, 9777-9789.
- 3. H. Sharghi, M. Hosseini-Sarvari and F. Moeini, Copper-catalyzed one-pot synthesis of benzimidazole derivatives, *Canadian J. Chem.*, 2008, **86**, 1044-1051.
- 4. H. Naeimi, Z. Rouzegar and S. Rahmatinejad, Sonocatalyzed facile synthesis of 2-aryl benzoxazoles using MnO₂ nanoparticles as oxidant agent under mild conditions, *Synth. Comm.*, 2017, , 2087–209.